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ABSTRACT 

Objectives:  The objective of this study is to increase the spatial and temporal resolution of 

dynamic 3D MR imaging of lung volumes and diaphragm motion. To achieve this goal, we 

evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data 

from highly undersampled measurements.  

 

Materials and Methods: We evaluated the performance of the BCS scheme to recover dynamic 

datasets from retrospectively and prospectively undersampled measurements. We also compared 

its performance against view-sharing, nuclear norm minimization, and l1 Fourier sparsity 

regularization schemes. Quantitative experiments were performed on a healthy subject using a 

fully sampled 2D dataset with uniform radial sampling, which was retrospectively undersampled 

with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images 

obtained from the four reconstruction schemes were compared to the fully sampled data using 

mean square error (MSE) and normalized high frequency (HFEN) error metrics. The schemes 
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were also compared using prospective 3D data acquired on a Siemens 3T TIM TRIO MRI 

scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 

and R2) qualitatively evaluated the reconstructed 3D datasets using a five-point scale (0-4) on 

the basis of spatial resolution, temporal resolution and presence of aliasing artifacts. 

 

Results: The BCS scheme gives better reconstructions (MSE =0.0232 and HFEN =0.133) than 

other schemes in the 2D retrospective undersampling experiments, producing minimally 

distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The 

prospective 3D experiments show that the BCS scheme provides visually improved 

reconstructions than other schemes. The BCS scheme provides improved qualitative scores over 

nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial 

blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by 

nuclear norm scheme and BCS scheme are comparable. 

The comparisons of the tidal volume changes also show that the BCS scheme has less temporal 

blurring as compared to the nuclear norm minimization scheme and the l1 Fourier sparsity 

regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine 

position (4L/min) and the measured supine inspiratory capacity (1.5L) is in good correlation with 

the literature. The improved performance of BCS can be explained by its ability to efficiently 

adapt to the data, thus providing a richer representation of the signal. 

 

Conclusion: The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing 

MRI of lung volumes and diaphragm motion. A temporal resolution of ~500ms, spatial 
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resolution of 2.7 x 2.7 x 10mm3 with whole lung coverage (16 slices) was achieved using the 

BCS scheme.  
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INTRODUCTION 

Dynamic imaging of respiratory mechanics plays an important role in the diagnosis of 

abnormalities to the active and passive components involved in respiratory pumping, including 

diaphragm paresis or paralysis, abnormal chest wall mechanics, and muscle weakness, which are 

a result of neuromuscular, pulmonary, or obesity related disorders1,2. Clinically, these impaired 

respiratory mechanics are evaluated indirectly by respiratory inductive plethysmography, 

spirometry or magnetometer3. While these schemes can be collected with very high temporal 

resolution, they lack spatial information and hence can only detect global changes which occur 

only during the	  advanced stages of the disease4. Early detection and localization of the disease is 

very crucial for treatment planning.  

Magnetic resonance imaging is gaining popularity over the above techniques because it provides 

a non-invasive and direct visualization of dynamic changes in diaphragm and chest wall5-8 

positions, without exposure to ionizing radiation. The evaluation of dynamic changes in lung 

volumes and diaphragm movement requires high spatial and temporal resolution, plus high 

volume coverage to cover the entire thorax. Achieving entire volume coverage is especially 

challenging in obese subjects who are at a high risk for impaired diaphragm movement. The 

respiratory rate during tidal breathing is 12-16 cycles per min (~5 sec per cycle), while the 

normal respiratory excursion of the diaphragmatic dome is about 1.5 cm9. The speed of the 

diaphragm is about 0.3 cm/sec. Thus considering a pixel size of 3 x 3 mm, the diaphragm 

position changes at a rate of 1 pixel/sec. To avoid motion-blurring, imaging time should be much 

shorter than 1 sec. While 2D imaging techniques can offer high temporal resolution, it is 

challenging to merge the information from multiple 2D slices for 3D visualization of the 
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diaphragmatic dome and volume measurements because of the irregular nature of respiratory 

motion in most subjects.  

Research has shown that three dimensional dynamic MRI (3D-DMRI) is a more suitable option 

to analyze respiratory mechanics7,10,11 and is reported to have higher correlation with spirometry 

measurements than 2D-DMRI12. However, current 3D-DMRI implementations offer limited 

temporal/spatial resolution and volume coverage. While improved resolution and coverage may 

be achieved by acquiring 3D volumes at multiple breath-holds, this approach does not provide 

good estimates of respiratory dynamics or account for the hysteresis effect that the lung exhibits 

during normal breathing1,7,9. Furthermore, subjects with chronic obstructive pulmonary disease 

(COPD) have difficulty holding their breath making motion analysis difficult. Fast imaging 

techniques were introduced for 3D DMRI12-14 but current schemes still compromise on either 

spatial resolution or the temporal resolution. For example, echo-planar imaging (EPI) based 

sequences provide a temporal resolution of 330ms/frame, but can only achieve low spatial 

resolution14 and partial lung coverage. Similarly, 3D fast low-angle shot (FLASH) sequences 

with Cartesian undersampling, view-sharing, and parallel imaging was used to obtain whole lung 

coverage12, at the expense of a poor temporal resolution of 1 second; these schemes can only be 

used to image the dynamics during slow and controlled breathing conditions, which limits the 

flexibility of experimental paradigms. More recently, higher spatiotemporal resolution was 

reported using a 128 channel coil array15 with a Cartesian 3D-FLASH sequence and auto-

calibrated parallel acquisition (GRAPPA)16. However, these custom-made 128 channel coils are 

not widely available which restricts the widespread utility of this scheme. 

The main focus of this work is to evaluate the feasibility of blind compressed sensing 

(BCS) scheme, coupled with 3D stack of stars based golden angle radial trajectories, to enable 
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the dynamic imaging of lung volumes and the diaphragm, with full coverage of the thorax, at the 

spatial and temporal resolution needed to image tidal breathing. We compare the BCS scheme 

against other state of the art compressed sensing schemes that model the voxel profiles such as 

nuclear minimization based low rank reconstruction, l1 Fourier sparsity based regularization19-22 

and the commonly used view-sharing reconstruction. We have two expert radiologists 

quantitatively score the reconstructions from all the schemes on a four-point scale to assess the 

diagnostic image quality. 

MATERIALS AND METHODS 

Image Acquisition 

The institutional review board at the local institution approved all the in-vivo acquisitions. All 

the volunteers were fully informed of the nature of the procedure and written consent was 

obtained. The subjects were scanned on the Siemens 3T Trio scanner (Siemens AG, Healthcare 

sector, Erlangen, Germany) with a 32-channel body array coil.  

Retrospectively undersampled 2D acquisition: A fully sampled 2D dynamic dataset was 

collected on a normal subject using a gradient recalled echo (GRE) sequence with uniform radial 

sampling pattern. The sequence parameters were FOV: 350 x 350mm2, slice thickness: 10mm, 

TR/TE: 2.67/1.17ms, and matrix size: 128 x 128. The spatial resolution was 2.7 x 2.7 x 10mm3. 

180 frames were acquired with 256 radial spokes per frame, which resulted in a temporal 

resolution of 683ms.  

Prospective 3D acquisition: 8 healthy volunteers (5 males and 3 females; median age: 28) 

without any evidence of pulmonary disease were included in this study. The 3D dynamic data 

was collected using a FLASH sequence with a 3D radial stack of stars trajectory. The 3D 
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acquisition uses a golden angle radial trajectory in the axial plane (kx, ky) combined with a 

conventional phase encoding step in the kz direction. The radial spokes were separated by the 

golden angle (111.25o) to achieve incoherent sampling. The sequence parameters for 6 of the 8 

datasets are: FOV= 350x350mm2, TR/TE= 2.37ms/0.92ms, partial Fourier factor: 6/8, base 

matrix size: 128x128, and spatial resolution: 2.7x2.7x10mm3. A total of 3500 radial spokes were 

acquired per slice and a total of 16 slices were acquired to obtain whole lung coverage. The data 

was binned by considering 16 radial spokes per frame resulting in a temporal resolution of 

492.96 ms/frame. The coil sensitivity profiles were estimated using an Eigen decomposition 

method23. The 7th dataset was acquired with a larger FOV: 400x400mm2 that resulted in slightly 

lower spatial resolution of 3.1x3.1x10mm3. All the other scan parameters were the same as 

previous acquisitions.  Two datasets were collected from the 8th subject, one while free breathing 

and one while breathing from functional residual capacity (FRC) to total lung capacity (TLC). 

The scan parameters for these two datasets were FOV= 350x350mm2, TR/TE= 2.37ms/0.92ms, 

base matrix size: 128x128, spatial resolution: 2.7x2.7x10mm3. A total of 18 slices were acquired 

with 3500 radial spokes per slice. 16 radial spokes were binned for each frame, which gave a 

temporal resolution of 683 ms for these two datasets. The scan time for each of these datasets 

was less than 2 min.  

Image Reconstruction 

In this work, we pre-interpolated the radial data points on a Cartesian grid points that were 

within 0.5 unit of the measured sample using linear interpolation. A similar pre-interpolation step 

is used in constrained reconstruction algorithms for other body part applications18,19,24. The pre-

interpolation was done for all the schemes. This enabled us to use fast Fourier transforms (FFTs) 

and inverse FFTs in the forward and backward models of the algorithm. There was no noticeable 
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change in the quality of reconstructions obtained from pre-interpolated data as compared to the 

ones obtained from non-Cartesian data with non-uniform data with non-uniform FFTs (NUFFTs) 

and INUFFTs.  

Signal representation 

The goal of the reconstruction schemes is to recover the dynamic dataset Γ from its 

undersampled measurements. Here, Γ is an M x N Casorati matrix, where M is number of voxels 

in a single time frame and N is number of time frames. In other words, the columns of Γ 

represent the signal at every voxel. The measurements are modeled as follows:  

𝑏! = 𝒜! Γ +   𝑛!   ;     𝑖 = 1,⋯ ,𝑁 (1) 

where bi is the undersampled measurement and ni is the noise for the ith time frame. 𝒜! = 𝑆!𝐹𝐶, 

where Si is the undersampling mask, F is Fourier operator and C are the coil sensitivities. The 

least squares reconstruction problem can be posed as:  

Γ∗ = arg  min!      A Γ − b !
!

!"#"  !"#$%$&'#!(  !"#$

 (2) 

The compressed sensing schemes considered in this paper enforce different priors on the 

temporal profiles of the data to make the problem well posed.  We discuss each of the schemes in 

detail below. 

• Low-rank recovery using nuclear norm minimization20-22: This scheme assumes that the 

temporal profiles of pixels lie in a low dimensional space. Fig. 1.a reveals the low rank 

structure of the data where the singular values rapidly decay to zero. The problem is 

formulated as a convex optimization problem given below:  
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Γ∗ = arg  min!      A Γ − b !
!

!"#"  !"#$%$&'#!(  !"#$

      +    λ Γ ∗
!"#$%&'  !"#$  

 (3) 

where 𝜆 is the regularization parameter. The nuclear norm, which is a convex relaxation 

of the matrix rank, is defined as Γ ∗ = 𝜎!
!"#  {!,!}
!!! , where σi are the singular values of 

Γ. The nuclear norm minimization scheme can be viewed as a direct alternative to 

classical two step low rank25 schemes, which pre-learn the temporal basis functions from 

navigator data and use these functions to estimate the basis images. 

• l1 Fourier sparsity regularization: This scheme exploits the sparsity of the data in the 

Fourier transform domain along the temporal dimension (x-f space) (see Fig. 1.b). The 

convex optimization problem is formulated as: 

Γ∗ = argmin!      A Γ − b !
!

!"#"  !"#$%$&'#!(  !"#$

+    λ   ℱ!(Γ) !!
!"#$%&'(  !"#$%&$  !"#$!%&'

 (4) 

where ℱ! is the Fourier transform in the temporal direction. The 𝑙! norm in the second 

term enforces sparsity on the Fourier coefficients along the temporal dimension. This 

approach is a widely used scheme and has similarities to k-t SPARSE26,27 and k-t 

FOCUSS28,29 schemes, while the specific algorithms used to solve them are different 

from our implementation. The recovery implicitly assumes that the intensity profiles of 

the voxels are sparse linear combinations of Fourier exponentials.  

• Blind compressed sensing (BCS)17,18 : The temporal profile for each pixel is modeled as a 

sparse linear combination of a atoms from a learned dictionary. Since the dictionary that 

is learned from the undersampled measurements is subject specific, not necessarily 

orthogonal and may be over-complete, it provides a richer representation of the data. The 

sparsity enforced on the dictionary coefficients suggests that very few temporal basis 
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functions are sufficient to model the temporal profiles at any pixel. This results in lower 

degrees of freedom and hence minimizes artifacts at high acceleration factors. The data Γ 

is modeled as a product of the sparse coefficient matrix U and dictionary V. The signal 

recovery from undersampled measurements is posed as a constrained optimization 

algorithm as shown below:  

U∗,V∗ = arg  min!,!      A UV − b !
!

!"#"  !"#$%$&'#!(  !"#$

+    λ   U !!
!"#$%&'(  !"  

!"#$%#&  !"#$%&'

𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡     V !
! < 1 

(5) 

The second term is the sparsity promoting 𝑙! norm on the coefficient matrix U. The 

optimization problem is constrained by imposing unit Frobenius norm on the over-

complete dictionary V, which makes the recovery problem well posed and avoids scale 

ambiguity issues. Our experiments18 show that the joint estimation of the basis functions 

and its coefficients from a golden angle radial trajectory is well-posed, thanks to the 

oversampling of center of k-space offered by radial trajectories.  

• View-sharing: In this scheme, each frame of the dataset is reconstructed by combining 

information from a few adjacent frames. For this study we combined 200 radial spokes to 

reconstruct each frame with a step size of 16 to match the temporal resolution with other 

reconstruction schemes.  

Implementation of constrained algorithms  

All the above constrained algorithms are implemented using alternating minimization 

algorithms; these schemes alternate between (a) a backward mapping from k-space to image 

space to enforce data consistency, and (b) a projection step, which is a shrinkage or projection 

operator. These algorithms are guaranteed to converge to the global minimum of the cost 
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function, provided it is convex (nuclear norm and Fourier sparsity regularization, specified by (1) 

and (2), respectively).  Due to non-linear nature of the above algorithms, coupled with a non-

uniform k-space sampling, it is complex to analyze the spatial and temporal smoothing behavior 

of the algorithms. However, the projection step provides useful insights on how each of these 

schemes removes the aliasing patterns that results from the undersampling. We perform a brief 

analysis of the constrained algorithms to obtain more insights of the tradeoffs involved in 

accelerating using these schemes in the appendix A.  

The discussion in appendix A shows constrained schemes that model the temporal profiles 

reduce aliasing artifacts by non-local view-sharing. Specifically, they recover each pixel in the 

dataset as a weighted linear combination of other pixels in the dataset, possibly distant from it in 

time. Note that this approach is drastically different from classical view-sharing schemes that 

combine the data from nearby frames to recover each frame; we term such classical view-sharing 

schemes as local to differentiate them from the non-local ones discussed above. Non-local 

averaging combines information from images in similar respiratory phases that are distant in 

time thus minimizing the temporal blurring introduced by local view-sharing schemes, while 

achieving good suppression of noise-like aliasing artifacts. The analysis shows that the BCS and 

l1 Fourier sparsity regularization schemes perform spatially varying non-local view-sharing, 

while the nuclear norm minimization scheme performs space invariant non-local view-sharing. 

The adaptation of the view-sharing strategy with the spatial location enables BCS and l1 Fourier 

sparsity regularization to achieve improved denoising performance.  

Experiment details 

 The fully sampled dataset (acquired with 256 radial spokes) was retrospectively undersampled 

using 16 radial spokes per frame, corresponding to an acceleration factor of 8. This 



12	  
	  

retrospectively undersampled dataset was reconstructed with the above mentioned nuclear norm 

minimization scheme, l1 Fourier sparsity regularization scheme, BCS, and standard view-sharing 

scheme. The reconstructed data was compared to the fully sampled acquisition. To study the 

performance of the BCS scheme as a function of acceleration, the 2D dataset undersampled 

using 20, 16, 12 and 10 radial spokes corresponding to acceleration factors of 6.4, 8, 10.2 and 

12.8, respectively, was reconstructed using the BCS scheme. The slice-by-slice reconstruction 

was performed for all the 3D DMRI datasets using the above-mentioned schemes. All the 

reconstructions were performed in MATLAB on a desktop computer (Intel Xeon E5-1620 with 8 

core CPUs, 3.6GHz processor and 32 GB RAM) with a 5.6 GB NVDIA graphical processing 

unit (GPU).   

Image Quality Analysis 

To compare reconstructions, we used the following metrics: 

• Mean square error (MSE): 

In the 2D experiments, the fully sampled ground truth data was used as reference to 

calculate the reconstruction errors. The optimal regularization parameter λ was chosen 

such that the error between reconstructions and the fully sampled data specified by 

MSE =   
Γ!"#$% − Γ!"#$ !

!

Γ!"#$ !

!  (6) 

was minimized. However, the MSE metric could not be used for the 3D experiments, as 

the fully sampled ground truth was not available. Hence to optimize for λ, we used the L-

curve strategy30. 

• Normalized high frequency error metric (HFEN): 
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The HFEN metric31 gives a measure of spatial blurring of the image and the quality of 

fine features and edges. The HFEN metric is defined as: 

HFEN =
1
𝑁

LoG Γ!"#,      ! − LoG(Γ!"#$%  ,      !) !
!

LoG(Γ!"#,      !) !
!

!

!!!
 (7) 

where N is the number of pixels in the image and LoG is the Laplacian of the Gaussian 

filter that captures edges. The filter specifications are: kernel size 15x15 pixels, with a 

standard deviation of 1.5 pixels31. The regularization parameters for all the schemes were 

optimized using the HFEN and MSE values in case of 2D experiments. 

• Qualitative evaluation: clinical scoring  

Each of the 3D dynamic reconstructions was evaluated for spatial resolution, temporal 

resolution and artifacts by two expert cardiothoracic radiologists using a four-point scale 

(4-Outstanding Diagnostic Quality, 3- Good Diagnostic Quality, 2- Average Diagnostic 

Quality, 1- Limited Diagnostic Quality and 0- un-interpretable). The image data sets were 

viewed using OsiriX.  

Image post-processing to demonstrate the utility of 3-D DMRI 

To demonstrate the potential applications of this work, the lung was segmented using a region-

growing algorithm implemented in MATLAB after reconstructing the 3D dynamic data using the 

BCS scheme, the nuclear norm minimization scheme and the l1 Fourier sparsity regularization 

scheme. This analysis was done for the dataset collected with the tidal breathing maneuver on 

subject 8. The analysis was repeated for the same subject with deep breathing maneuver using 

the BCS reconstructed data. The lung volume was calculated in terms of the number of pixels 
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within the lung region. The velocity maps of the diaphragm were obtained using optical flow 

method32, which was implemented using a multi-scale approach. 

RESULTS 

Dynamic 2D experiments: The performance of all the schemes was first evaluated by 

retrospectively undersampling a 2D fully sampled dataset. Fig. 2 shows a spatial frame from the 

dynamic 2D dataset (top row), the corresponding error images (middle row), and the time profile 

at a cross-section shown by the yellow line in spatial frame (last row). The columns correspond 

to the fully sampled dataset (first column) and the different reconstructions from retrospectively 

undersampled data. All the comparisons were done at an undersampling factor of 8 (using 16 

radial spokes per frame). We observe that the reconstructions from the nuclear norm 

minimization and l1 Fourier sparsity regularization schemes suffer from spatio-temporal blurring, 

especially along the diaphragm borders, as indicated by the arrows in the error images. The local 

view-sharing scheme combines information from adjacent frames (13 adjacent frames were 

combined for reconstruction of each frame), which results in significant blurring of the 

respiratory motion as seen from the time profiles. The BCS scheme has the lowest MSE errors 

(0.0232) and HFEN values (0.133), which indicates superior reconstruction and less spatio-

temporal blurring as compared to the other schemes. 

Fig. 3 shows the comparisons of the reconstructions from 20, 16, 12 and 10 radial spokes 

per frame with the fully sampled data. We observe that BCS gives reliable reconstructions with 

20 and 16 radial spokes per frame. A reconstruction from 12 or 10 radial spokes results in 

temporal blurring as shown by the arrows. In the 3D experiments, we fixed the number of radial 

spokes per frame to 16 for all the schemes. 
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Dynamic 3D experiments: Fig. 4 shows the comparisons of the four schemes for two subjects. 

The figures show a single frame and a time profile along the cross section for 4 of the 16 slices. 

We observe that the local view-sharing scheme suffers from temporal blurring and aliasing 

artifacts. The nuclear norm minimization scheme provides better reconstructions than view-

sharing, but it exhibits more spatio-temporal blurring than the BCS reconstructions as shown by 

the arrows. Reconstructions from both the l1 Fourier sparsity regularization scheme and the BCS 

scheme show comparable image quality in the spatial domain as seen from the spatial frames in 

both the figures. However, the l1 Fourier sparsity regularization scheme results in higher 

temporal blurring than BCS. In slices where the tissue motion is very subtle (slice 6 in Fig. 4), 

BCS preserves the motion whereas all other schemes result in blurring of temporal details. One 

of the radiologists carefully analyzed the performance of all the schemes as a function of slice 

position while clinical scoring as shown in Fig. 5 and found that, the performance of the BCS 

scheme was relatively insensitive to the slice position compared to other schemes. Specifically, 

the reconstructions of the anterior and posterior slices of the lung (2nd and the 3rd column of Fig. 

5), obtained by the other schemes, showed higher degradation in image quality than the more 

central slices (1st column of Fig. 5) especially in terms of spatial and temporal blurring (pointed 

by arrows).  

Table 1 shows the visual scores of all the four schemes by both the radiologists (denoted 

as R1 and R2) based on three different factors: 1.a – Aliasing artifacts, 1.b – Temporal blurring 

and 1.c – Spatial blurring. The scores from both the radiologists suggest that the BCS scheme 

performs better than other schemes in the temporal blurring (Table 1.b) and spatial blurring 

(Table 1.c) categories. The improved performance of BCS can be attributed to the spatially 

varying non-local averaging feature and its ability to adapt to the cardiac and respiratory patterns 
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of the specific subject. The qualitative scores for aliasing artifacts are roughly the same for 

nuclear norm minimization scheme (3.75±0.7, 2.62±1.19) and BCS scheme (and 3.62±0.51, 

2.62±0.91); the two figures within parentheses denote the mean scores from R1 and R2, 

respectively, and the number following ± is the standard deviation. We observe that the inter-

observer variability is high for this category compared to the others. The scores for the view-

sharing scheme are much lower than other three schemes for all the three categories from both 

radiologists. In summary, the BCS scheme, the nuclear norm minimization scheme and the l1 

Fourier sparsity regularization scheme perform comparably in terms of minimizing the aliasing 

artifacts. However, BCS scheme out-performs all other schemes in terms of minimizing spatio-

temporal blurring as compared to the other schemes. 

Fig. 6 shows the lung volume as a function of time and the lung segmentation contours 

for the BCS, nuclear norm minimization and l1 Fourier sparsity regularization schemes on one 

subject with tidal breathing maneuver. The change in lung volume for BCS (approximately 200 

mL) was significantly different from that for the nuclear norm minimization scheme (around 150 

mL) and l1 Fourier sparsity regularization scheme (<100 mL). The contours depict the boundary 

of the lung obtained from the segmentation of the reconstructions. The two time points (a and b) 

in the figure correspond to maximum inspiratory volume. From the contours, we observe that at 

maximum inspiration the boundary of the lung for nuclear norm minimization and l1 Fourier 

sparsity regularization scheme is higher than that for the BCS scheme, which means the volume 

of the lung is less than that for the BCS scheme. This is attributed to higher temporal blurring in 

the other two schemes as compared to the BCS scheme. The time point c corresponds to 

maximum expiration. From the last row in the figure we observe that the segmentations from all 

the three schemes are the same. The tidal volume analysis could not be performed on the view-
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sharing scheme since the reconstructions in this case suffered from aliasing artifacts, which 

resulted in poor segmentation of the lungs.  

Fig. 7 shows the change in volume as a function of time and the segmented lung volumes 

for one subject with tidal breathing and deep breathing maneuvers. The lung was segmented 

from the reconstructions obtained using the BCS scheme. The change in lung volume was 

approximately 200mL. The normal minute ventilation was calculated as tidal volume x number 

of breathing cycles in a minute which was found to be 4L/min. In case of deep breathing 

maneuver we measured the supine inspiratory capacity, which was found to be 1.5L. This 

correlates well with the literature for normal subjects in the supine position. 

The motion of the diaphragm as tracked using an optical flow method is shown in Fig. 8. 

Two sets of two frames each, one set with a large change in diaphragm position (red segment and 

blue segment) and one with little change in diaphragm position (green segment and orange 

segment) were chosen during inspiration and expiration. The velocity vector maps and the color-

coded velocity maps are shown in each of the cases. Fig. 8.a-b shows the velocity maps during 

inspiration and Fig. 8.c-d shows the velocity maps during expiration. From the color-coded 

velocity maps we observe that a higher displacement in the diaphragm position (higher 

diaphragm velocity) correlates well with the observed change in lung volume between the 

corresponding frames during both inspiration and expiration. 

DISCUSSION 

The application of compressed sensing together with parallel imaging to accelerate 3D dynamic 

imaging of lung volumes and diaphragm motion has not been studied extensively in the past. We 

evaluated the performance of four different schemes (view-sharing, nuclear norm minimization 
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scheme, l1 Fourier sparsity regularization scheme and BCS scheme) in accelerating 2D and 3D 

dynamic free breathing MRI of the thorax in 8 normal subjects. In both our 2D and 3D 

experiments, we observe that the BCS scheme yields superior reconstructions compared to other 

schemes qualitatively and quantitatively. The BCS scheme, along with golden angle sampling 

patterns, offered a temporal resolution of ~500ms and a spatial resolution of 2.7 x 2.7 x 10mm3 

with whole lung coverage, while maintaining image quality. To the best of our knowledge, this is 

the first work, which demonstrates temporal resolution of less than 1 sec, along with whole 

coverage of the thorax, which enables 3D free breathing dynamic imaging of lung volumes and 

diaphragm motion. 

We observe that the classical view-sharing scheme suffers from severe temporal blurring as it 

combines information from adjacent frames. Since the data acquired is free breathing, the 

respiratory motion between adjacent frames is very high. Hence, the view-sharing approach 

results in extensive blurring. In contrast, the constrained schemes can be thought of as non-local 

view-sharing schemes; their ability to combine information from frames/pixels that are highly 

similar enables them to reduce blurring. We observe that the ability of the BCS and the l1 Fourier 

sparsity regularization scheme to spatially adapt the non-local averaging depending on the 

dynamics enables them to provide better reconstructions than the nuclear norm minimization 

scheme. In dynamic datasets with regions corresponding to strikingly different dynamics (e.g. 

cardiac and respiratory motion), the ability to spatially adapt the non-local averaging can give 

improved results. The l1 Fourier sparsity regularization scheme is sensitive to irregular voxel 

profiles resulting from non-linear interactions between cardiac and respiratory motion. This is 

because irregular voxel profiles result in a higher number of non-zero Fourier coefficients, thus 

disrupting the sparsity assumption. The regularity of the breathing patterns will vary from subject 
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to subject leading to inconsistent performance of the l1 Fourier sparsity regularization scheme. 

These schemes may not be reliable in the dynamic assessment of lung volumes during free 

breathing in patients suffering from emphysema or other causes of dyspnea. The patient specific 

dictionaries in the BCS scheme may be a better choice in patients that are short of breath; these 

learned basis functions will result in a sparser data representation and hence provide reliable 

recovery from fewer measurements. Additionally, incoherent sampling by golden angle ordering 

aids in obtaining a sparser representation, leading to superior reconstructions. Other interleaved 

sampling patterns may also lead to similar accelerations however a thorough validation of this 

claim is beyond the scope of the manuscript. We observe that there are currently several different 

flavors of compressed sensing implementations, which may be applied to this specific problem.  

We restrict our comparisons in this work to few of the state of the art dynamic imaging schemes 

since rigorous comparison with all of them is beyond the scope; alternate implementations of 

these algorithms may produce higher quality reconstructions with less temporal/spatial blurring 

and aliasing artifacts than reported in this work. We have used the radial FLASH sequence to 

demonstrate the feasibility of the BCS scheme. However, this scheme can be combined with 

more efficient trajectories with longer readouts (e.g. multi-shot EPI, multi-shot spiral) to further 

improve spatial and temporal resolution and echo-time, which is the focus of our current work. 

The acceleration provided by BCS can enable us to keep the readout duration small enough to 

minimize B0 induced distortions and losses. 

The average scores from both the radiologists indicate good agreement for spatial and temporal 

blurring criteria. There is relatively higher inter-observer variability in scores for the aliasing 

artifact criterion, but the mean scores from both the radiologists suggest that the BCS scheme 

performs better. The post-scoring discussion revealed that one of the radiologists gave more 
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importance to the blurring and artifacts that affected the diaphragm motion or diaphragm 

delineation. By contrast, the other radiologist rated the datasets based on the blurring and 

artifacts in the whole image rather than placing more emphasis on the diaphragm. This explains 

the bias in the scores pertaining to spatial blurring. The number of subjects is insufficient to 

perform statistical analysis for inter-observer agreement.  

Our preliminary results using the BCS scheme for dynamic imaging of lung volumes and 

diaphragm motion obtained from a single dataset appear promising. The normal minute 

ventilation in a resting adult in the upright position is about 5L/min to 8L/min33. However the 

normal minute ventilation in the supine position is less than in the upright position34,35 and all of 

our MRI images were obtained in the supine position. The measured minute ventilation of 

4L/min is within the normal range for a supine subject. The measurement of minute ventilation is 

useful in a number of disease mechanisms that produce arterial hypercapnia33. The lung volumes 

were segmented using a simple region growing approach with minimal user interference. There 

are more sophisticated lung segmentation algorithms including the fuzzy-connectedness 

algorithm that could be performed to further improve our lung segmentation. 

The proposed imaging protocol acquires 3D data with 16 partitions using the stack of stars 

trajectory; the sampling pattern is the same for all the partitions, which enables slice-by-slice 

recovery. While the number of slices is sufficient for good depiction of diaphragm and lung 

volume dynamics in normal subjects, it may not be sufficient for obese subjects. Improved slice 

coverage may be obtained using fully 3D recovery exploiting the spatial redundancies and using 

3D trajectories. The current sequence uses a 3D stack of stars trajectory, where the sampling 

along the kz direction is uniform. Since the kz direction is fully sampled (except in some cases 

where partial Fourier recovery is used), we compute a Fourier transform along kz and recover 
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each slice independently. We anticipate that using different angles for different kz planes as well 

as sampling different kz planes with different sampling density will provide a more incoherent 

and appropriate sampling pattern. This strategy may result in improved recovery, but at the cost 

of higher computational complexity and memory demand, since we cannot decouple the problem 

to solve for each slice independently.  The golden angle-sampling pattern was used to achieve 

incoherent sampling across time frames; however, other interleaved patterns can be used with 

BCS to provide these accelerations. Our future work will focus on these and other image 

reconstruction schemes that are optimized for individual patients suffering from respiratory 

disorders including COPD, asthma, and cystic fibrosis.  

In conclusion, our study indicates that the blind compressed sensing (BCS) scheme gives 

individualized reconstructions with diagnostically useful image quality and minimal spatio-

temporal blurring as compared to other accelerated imaging schemes. We showed 3D dynamic 

imaging of lung volumes and diaphragm motion with high spatial and temporal resolution is 

achievable using the BCS scheme. 
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APPENDIX A 

Tradeoffs in image recovery using constrained algorithms 

The nuclear minimization scheme, the l1 Fourier sparsity regularization scheme, and the BCS 

rely on modeling the temporal profiles/columns of the Casorati matrix. The sparsity priors on the 

coefficients U in BCS and on the Fourier coefficients in the l1 Fourier sparsity regularization 

scheme cause many of the coefficients to be zero. Hence these schemes use different basis 

functions at different pixels. The nuclear norm minimization scheme, in contrast, does not 

enforce any sparsity prior and hence uses the same basis functions at each pixel. The projection 

of the intensity profile at the pixel (𝑥,𝑦), denoted by the vector 𝜌 !,! , is obtained as  

𝜌 !,! =   𝐏(!,!)𝜌 !,! , 

where the matrix 𝐏(!,!) is the specified by   

𝐏(!,!) = 𝐕!"! (𝐕!"𝐕!"! )!!𝐕!" (1) 

The rows of the matrix 𝐕!" are the temporal basis functions that are active at the pixel. The 

above relation shows that the intensity at the 𝑖!! frame (𝑖!! row of 𝜌 !,! ) is obtained as the 

weighted linear combination of all the entries in 𝜌 !,! ; the weights are specified by the 𝑖!! row 

of 𝐏(!,!). We term the rows of the 𝐏(!,!) matrix in (6) as the temporal point spread function 

(TPSF) since it characterizes averaging across time performed by the above constrained schemes 

to remove aliasing, which is noise-like in case of radial undersampling (see Fig A). We observe 

that each row of the matrix gives the weights for the corresponding time point. 

Since we use the l1 norm, which is a convex relaxation of l0 sparsity, the recovered coefficients 

are not exactly sparse, and have many small non-zero coefficients. Similarly, the recovered 

matrix is not exactly low rank in the nuclear norm setting. For visualization purposes, we 
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truncate the coefficients whose magnitudes are less than 0.1% of the maximum in the Fourier 

sparsity regularization and BCS settings to generate Fig. A.  Similarly, we perform a singular 

value decomposition of the recovered matrix, followed by a truncation of singular values less 

than 0.1% of the maximum in the nuclear norm scheme. We stress that this truncation is only 

used for visualization; the actual algorithms do not use truncation. Fig. A shows the TPSF for 

one time point corresponding to peak inhalation (specified by solid orange line) obtained from 

the reconstructed data and the corresponding signal profiles at three pixels. The pixel intensity at 

a specific pixel and time point in the denoised image is obtained as a weighted linear 

combination of pixels at all the time points at the same spatial location; the weights are specified 

by the value of the TPSF.  We observe that the TPSF values are higher for frames with similar 

respiratory phase (marked by dotted orange markers), which implies that these pixels contribute 

to the summation heavily. We observe that the TPSF is spatially and temporally varying for BCS 

and l1 Fourier sparsity regularization scheme. Since the low-rank minimization scheme uses the 

same set of basis functions at each pixel, in this case the TPSF is only temporally varying. The 

TPSF for view sharing method is both temporally and spatially invariant as seen in Fig. A.  
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Figure 1: Illustration of the data representation in different transform domains: The nuclear norm minimization scheme, 

the l1 Fourier sparsity regularization scheme, and the BCS scheme relies on constrained modeling of the intensity profiles 

of the voxels, specified by  𝚪 = 𝑼𝑽. The nuclear norm minimization scheme capitalizes on the efficient representation of 

the voxel profiles using few basis functions. The coefficients in U, along with the singular values are shown in a. The 

singular values of the data (Γ) decay rapidly to zero indicating that the data can be represented efficiently using few basis 

functions. The pseudo-periodicity of the data is exploited by l1 Fourier sparsity regularization scheme, using the sparse 

representation of the intensity profiles in the temporal Fourier transform (x-f space) as seen in 1.b. Figure 1.c shows the 

sparse coefficients obtained from the BCS scheme. BCS, similar to nuclear norm minimization scheme, learns the 

dictionary of the basis functions from the data itself, thus adapting to the dynamic content of the time series. The 

adaptation of the dictionary to the signal provides sparser representations, which in turn translates to improved 

reconstructions. 
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Figure 2: Comparison of different schemes on 2D fully sampled dataset: The figure shows comparison of reconstructions 

obtained from view-sharing, nuclear norm minimization scheme, l1 Fourier sparsity regularization scheme, and BCS 

schemes with the fully sampled data. The top row shows a single frame for each of the schemes. The middle row shows the 

error images with respect to the fully sampled data and the last row shows the time profiles all the schemes at a cross 

section shown by the yellow dotted line. From the mean square errors (MSE) and the HFEN metric, we observe that BCS 

gives superior performance than other schemes. All the schemes except BCS suffer from spatio-temporal blurring as 

shown by the yellow arrows in the error images and time profiles. 
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Figure 3: Performance of the BCS scheme at different acceleration factors: The figure shows the single frame (row 1), the 

time profiles (row 2) and the corresponding error images (row 3-4) of reconstructions obtained by retrospectively 

undersampling the dataset with 20, 16, 12, and 10 radial spokes per frames resulting in acceleration factors (R) of 6.4, 8, 

10.2, and 12.8 respectively. Reliable reconstructions are achieved up to R=8. Beyond R=8 we begin to observe temporal 

blurring as shown by the arrows in the error images. Note: All the images are in same scale.  
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Figure 4: Comparison of different schemes on dynamic 3D free breathing: The figure shows comparison between view-

sharing, nuclear norm minimization scheme, l1 Fourier sparsity regularization scheme and BCS scheme (Rows 1-4) for 4 

of the 16 slices on subject 2. We observe that the BCS gives better reconstructions than other schemes. It is seen that BCS 

shows superior spatio-temporal fidelity in comparison to the other schemes (see yellow arrows). 
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Figure 5: Performance of all the schemes as a function of slice position: The figure shows comparison between view-

sharing, nuclear norm minimization scheme, l1 Fourier sparsity regularization scheme and BCS scheme (Rows 1-4) for 

slices positioned at the center (1st column), anterior (2nd column), and posterior (3rd column) of the lung. We observe that 

all schemes except the BCS scheme suffer from higher temporal blurring in the slices at anterior and posterior regions of 

the lung than those in the center region. BCS scheme is relatively insensitive to the slice position as compared to other 

schemes.   
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Figure	  6:	  Comparison	  of	  BCS,	  Nuclear	  norm	  minimization	  and	  l1	  Fourier	  sparsity	  regularization	  schemes	  for	  changes	  in	  lung	  

volume	  as	  a	  function	  of	  time	  for	  Subject	  8:	  The	  plot	  shows	  the	  volume	  of	  lung	  (in	  mL)	  as	  a	  function	  of	  time	  obtained	  from	  

reconstructions	  using	  BCS	  (in	  red),	  nuclear	  norm	  minimization	  (in	  green)	  and	  l1	  Fourier	  sparsity	  regularization	  (in	  blue).	  The	  

second,	  third	  and	  fourth	  rows	  show	  the	  lung	  segmentation	  contours	  for	  the	  three	  schemes	  at	  three	  time	  points	  a.	  and	  b.	  and	  
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c.	  respectively.	  The	  contours	  are	  shown	  for	  three	  of	  the	  18	  slices.	  	  From	  the	  plot	  as	  well	  as	  from	  the	  segmentations,	  we	  can	  

see	  that	  the	  nuclear	  norm	  minimization	  and	  l1	  Fourier	  sparsity	  regularization	  scheme	  suffer	  from	  considerable	  temporal	  

blurring.	  Note:	  that	  the	  segmentations	  at	  time	  point	  c	  (peak	  expiration)	  are	  almost	  the	  same.	  This	  is	  expected	  because	  the	  

position	  of	  the	  diaphragm	  changes	  more	  during	  inspiration	  than	  expiration.	  	  

  

Figure 7: Changes in lung volume as function of time: The figure shows the changes in lung volumes as a function of time 

in case of tidal breathing maneuver (shown on the left) and deep breathing maneuver from total lung capacity (TLC) to 

functional residual capacity (FRC) (shown on the right). The segmented lung volumes during peak inhalation and peak 

exhalation are also shown for both breathing maneuvers. The tidal volume was measured to be approximately 200mL and 

the normal minute ventilation was around 4L/min. The supine inspiratory capacity was measured to be 1.5L. Note that 

these numbers are for supine position  
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Figure 8: Tracking diaphragm motion using velocity maps: The motion of the diaphragm was tracked at two time points 

between inspiration shown in (a-b) and two time points between expiration shown in (c-d). The velocity from inspiration 

to expiration is considered positive (in green) and velocity from expiration to inspiration is considered negative (in red). 

The velocity field maps and the color-coded velocity maps are shown for all four cases.  The change in lung volume shown 

by blue segment is much lesser than the change in lung volume shown by red segment. This translates to higher 

diaphragm motion in frames in red segment as compared to the blue segment as seen from the color coded velocity maps 

in a and b. Similar results were observed during both inspiration and expiration. 
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Table 1.c  Clinical Scores:  Spatial blurring 

  BCS Nuclear norm 
minimization 

l1 Fourier sparsity 
regularization View sharing 

  R1 R2 R1 R2 R1 R2 R1 R2 
Subject 1 4 4 2 3 3 3 1 4 
Subject 2 3 4 2 4 3 2 1 3 
Subject 3 4 4 2 4 3 3 1 4 
Subject 4 4 4 2 4 3 3 1 4 
Subject 5 4 4 3 4 3 2 1 4 
Subject 6 4 4 3 4 3 2 1 4 
Subject 7 4 4 2 4 3 3 1 3 
Subject 8 4 4 2 4 3 3 1 3 
Average 
scores 3.87±0.35 4±0 2.25±0.46 3.87±0.35 3±0 2.63±0.52 1±0 3.62±0.51 

Table 1.b  Clinical Scores:  Temporal blurring 

  BCS Nuclear norm 
minimization 

l1 Fourier sparsity 
regularization View sharing 

  R1 R2 R1 R2 R1 R2 R1 R2 
Subject 1 4 4" 2 3" 3 3" 0 0"
Subject 2 4 4" 3 4" 3 4" 2 1"
Subject 3 4 4" 1 3" 2 3" 1 1"
Subject 4 4 4" 2 3" 3 3" 1 1"
Subject 5 4 4" 3 4" 2 4" 0 1"
Subject 6 4 3" 2 2" 2 2" 1 1"
Subject 7 4 4" 1 2" 2 2" 0 1"
Subject 8 4 4" 3 3" 2 3" 0 0"
Average 
scores 4 ±0 3.87 ±0.35 2.21±0.83 3±0.75 2.37±0.51 2.5±1.3 0.62±0.74 0.75±0.46 

Table 1.a  Clinical Scores:  Aliasing Artifacts 

  BCS Nuclear norm 
minimization 

l1 Fourier sparsity 
regularization View sharing 

  R1 R2 R1 R2 R1 R2 R1 R2 
Subject 1 4" 1 4" 1 3" 1 1" 1 
Subject 2 3" 3 4" 3 2" 3 1" 1 
Subject 3 4" 4 4" 4 4" 4 1" 2 
Subject 4 4" 3 2" 3 3" 3 1" 2 
Subject 5 4" 3 4" 3 2" 3 1" 2 
Subject 6 4" 2 4" 2 4" 2 1" 1 
Subject 7 3" 3 4" 4 3" 2 1" 1 
Subject 8 3" 2 4" 1 3" 1 1" 0 
Average 
scores 3.62±0.51 2.62±0.91 3.75±0.7 2.62±1.19 3±0.76 2.37±1.06 1±0 1.25±0.7 
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Table 1 Clinical Scores of 8 3D DMRI datasets for all four schemes by both the radiologist: The clinical scores from the 

radiologists (R1 and R2) based on three different factors of aliasing artifacts, temporal blurring and spatial blurring are 

reported in Table 1.a-1.c respectively. We observe that all schemes except view-sharing are comparable in terms of 

minimizing aliasing artifacts for each radiologist as seen in 1.a. However, there is inter- observer disagreement  (different 

scores by R1 and R2) in the scores. BCS scheme has higher scores than all the other schemes in temporal and spatial 

blurring categories (Table 1.b-c), which indicates that BCS has minimal spatio-temporal blurring as compared to other 

schemes.  There is good agreement between the scores by both radiologists for temporal and spatial blurring categories.  

	  

Figure A: Illustrations of different algorithms: The TPSFs at a specific time frame at peak inhalation (shown by solid 

orange marker) and the underlying signal time profile are shown for three different pixels. The TPSF plots show that all 
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the three constrained schemes provide non-local averaging of pixel values, thus offering good denoising without resulting 

in temporal blurring. However the TPSF of view sharing is spatially and temporally invariant and thus leads to 

significant temporal blurring. The TPSF of BCS and l1 Fourier sparsity regularization scheme are spatially varying, while 

the nuclear norm minimization scheme is spatially invariant. We see that the TPSF from BCS is in good correlation with 

the underlying time profiles (black curves) at the respective pixels. The TPSF for the time frames shown by the solid 

orange marker has high values corresponding to time frames in the similar respiratory phase (shown by dotted orange 

marker). These frames contribute predominantly to the recovery of the specific frame, since this recovery is a weighted 

combination of signal at other time frames and the weights are specified by TPSF. 	  

	  


