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ABSTRACT

Bilinear models such as low-rank and compressed sensing,
which decompose the dynamic data to spatial and temporal
factors, are powerful and memory efficient tools for the recov-
ery of dynamic MRI data. These methods rely on sparsity and
energy compaction priors on the factors to regularize the re-
covery. Motivated by deep image prior, we introduce a novel
bilinear model, whose factors are regularized using convolu-
tional neural networks. To reduce the run time, we initial-
ize the CNN parameters by pre-training them on pre-acquired
data with longer acquistion time. Since fully sampled data
is not available, pretraining is performed on undersampled
data in an unsupervised fashion. We use sparsity regulariza-
tion of the network parameters to minimize the overfitting of
the network to measurement noise. Our experiments on free-
breathing and ungated cardiac CINE data acquired using a
navigated golden-angle gradient-echo radial sequence show
the ability of our method to provide reduced spatial blurring
as compared to low-rank and SToRM reconstructions.

Index Terms— Cardiac MRI, dynamic imaging, bilinear
model, unsupervised learning, image reconstruction

1. INTRODUCTION
Deep learning models are emerging as powerful approaches
for image recovery in a range of static inverse problems.
Direct inversion strategies, which rely on a large CNN to
recover the images from undersampled data, as well as model
based deep learning methods that interleave smaller CNN
blocks with data-consistency enforcing optimization modules
are available. By enforcing the data consistency, model based
methods can offer improved image quality over direct inver-
sion strategies. Unfortunately, dynamic MRI and parametric
MRI schemes often require the recovery of a large number
of image frames; the direct application of the current deep-
learning schemes to the above setting, along with end-to-end
optimization, is severely limited due to the high memory
demand and computational complexity of current methods.
Current strategies are either restricted to fewer time frames
[1] or often have to use small networks [2, 3].

Bilinear image models that factorize the dataset into spa-
tial and temporal factors have been widely used in the dy-
namic/parametric imaging applications. In addition to offer-
ing good recovery, a major benefit of these schemes is the
significantly reduced memory demand of these algorithms.

Specifically, the factors are significantly smaller in dimension
than the dynamic dataset. While early methods have relied on
calibration data to estimate one of the factors, the joint opti-
mization of both the factors offer several advantages includ-
ing improved image quality [4, 5]. These joint optimization
schemes often rely on sparsity and energy regularization pri-
ors on the factors, resulting in several flavors of algorithms
(e.g. low-rank, compressed sensing, manifold methods).

The main focus on this work is to use the power of con-
volutional neural networks (CNN) to improve the recovery of
dynamic imaging data. In particular, we regularize the fac-
tors using CNN-based priors. While the factors can be recov-
ered from the data using an unrolled optimization as in [6],
the memory demand of the unrolled strategy is a concern in
large scale problems (e.g. 3D + time). Hence, we propose to
use the direct inversion strategy to further reduce the memory
demand of the algorithm. A challenge with direct inversion
schemes is the lack of consistency between the reconstructed
images and the measured data. We propose to optimize the
parameters of the network to match the measured data dur-
ing image reconstruction as in deep image prior (DIP) [7].
While this reconstruction algorithm is associated with higher
computational complexity than unrolled schemes, it keeps the
memory demand of the algorithm minimal; we expect this ap-
proach to facilitate the recovery of large-scale datasets.

We initialize the generators with pre-trained networks to
reduce the reconstruction time and to improve performance.
Since it is impossible to acquire fully sampled ground truth
datasets, we propose to pre-learn the networks from under-
sampled k-space data from longer acquisitions (42 seconds).
Our experiments show that this initialization results in a sig-
nificantly faster convergence compared to bilinear models
trained using deep image priors. More importantly, the al-
gorithm converges to a less blurred solution compared to
random initialization of the network, when the reconstruction
from 10 second data is considered. We attribute the improved
performance to the pre-learning of the image properties (e.g
sharpness of boundaries), that may be absent of difficult to
estimate from short segments of data.

2. BACKGROUND
2.1. Bilinear models for dynamic MRI

Bilinear models, also termed as partially separable models,
are widely used in dynamic MRI, parameter mapping, and



MR spectroscopic imaging. These schemes express the Caso-
ratti matrix of the volume X as

X = UVT (1)

where the columns of U are the spatial basis functions, while
that of V can be interpreted as the temporal basis functions.
In addition to the efficiency in representing the large dynamic
dataset using few parameters, the above representation also
offers computational benefits. Specifically, the measurements
can be expressed as

Ai(xi) = Ai(U)vi (2)

Where Ai is sampling operator, while early methods re-
lied on calibrated strategies, the joint estimation of U and V
from the measured undersampled data offers several benefits.
These schemes pose the recovery of the signals from the un-
dersampled measurements A(X) as

{U∗,V∗} = argmin
U,V

∥∥A(UVT )−B
∥∥2+λ1R1(U)+λ2R2(V)

(3)
Here, R1 and R2 are regularization functionals. Depending
on the specific form of the regularization functions, one would
obtain different flavors of reconstruction algorithms. Where
B is the measurement data.

1. Low-rank regularization: Here, one would choose
R1(U) = ‖U‖2 andR2(V) = ‖V‖2 .

2. Blind compressed sensing: Here, one would choose
R1(U) = ‖U‖`1 andR2(V) = ‖V‖2 .

3. Smoothness regularization on manifolds (STORM):
The STORM scheme also relies on a factorization as
in (1), where R1(U) =

∑
σi‖u‖2i and V is obtained

as the eigen vectors of the graph Laplacian matrix of
the graph of the data. Both calibrated and uncalibrated
formulations are available.

The performance of the above methods critically depends on
the specific choice of the priorsR1 andR2 to estimate U and
V. All of the current methods rely on carefully chosen norms
to exploit specific image properties.

2.2. Deep Image Prior (DIP)

Deep image priors has been introduced to exploit the implicit
property that CNN architectures favor natural images more
than noise. The regularized reconstruction of an image from
undersampled and noisy measurements are posed as

{θ∗} = argmin
θ
‖A(x)− b‖2 such that x = Gθ[z] (4)

wher x = Gθ∗(z) is the recovered image, generated by the
CNN generator Gθ∗ whose parameters are denoted by θ. The
constraint that the image is generated by a CNN provides

implicit regularization, which facilitates the recovery of x in
challenging inverse problems. Here, z∗ is a random latent
variable, which may or may not be optimized. The above
problem is often solved using stochastic gradient descent
(SGD), which is often terminated early to obtain regular-
ized recovery. Specifically, when the generator has sufficient
capacity, the network will fit the measurement noise; early
termination is often used to avoid this and thus regularize the
recovery. Alternate approaches including alternatives to SGD
have been introduced to avoid the early stopping strategies.

3. DEEP BILINEAR UNSUPERVISED LEARNING
(DEBLUR)

Instead of using handcrafted models, we propose to use the
deep learned priors to regularize the problem as shown in the
fig 1. We propose to pre-learn the priors from exemplary data,
which is further optimized based on the measured undersam-
pled data during the reconstruction. Specifically, we pose the
recovery as

{U∗,V∗} = min
θ,φ

∥∥A(UVT )−B
∥∥2 ,

such that U = Gθ [U0] ;V = Gφ [V0]

(5)

Here, Gθ and Gφ are two CNN generators, parametrized by
the network parameters θ and φ, respectively. Here, U0 and
V0 are latent variables. We propose to solve the above opti-
mization scheme using SGD. Rather than using random latent
variables as in deep image prior, we choose them in an image
specific way. In this work, we choose V0 as the STORM ba-
sis functions that is estimated from calibration data, while U0

is obtained as

U0 =
(
AHB

)
VT

0 = AH
(
BVT

0

)
(6)

Since we minimize (5) using SGD, we expect the specific
choice of U0 and V0 to have minimal impact on the final
solution. However, we expect the specific choice of initial
guesses to influence the run time or the number of epochs.

3.1. Unsupervised pre-training of the generators

The generators in DIP are usually not pre-trained. To further
reduce the run time of the algorithm, we propose to pre-learn
the networks from exemplary data. As discussed previously, it
is difficult to acquire fully sampled datasets in dynamic imag-
ing applications. We hence rely on the unsupervised strategy:

{θ0,φ0} = argmin
θ,φ

Ntrain∑
i=1

∥∥A(UVT )−B(i)
∥∥2 ,

such that U = Gθ [U0(i)] ; V = Gφ [V0(i)]

(7)
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Fig. 1. Proposed method. Two CNN networks are used on the spa-
tial and temporal prior factors. CNN 1 is initialed with the U0 as
mentioned in the Eq. 6. CNN 2 is initialized with the SToRM tem-
poral basis. We have also applied l1 norm on the network parameters
to stabalize the convergence.

Here, U0(i) and V0(i) are initial guess factors for the ith

dataset, while B(i) is the corresponding measurements. The
above training will yield initial weights φ0 and θ0, which are
used to initialize the algorithm.

3.2. Regularization of network parameters

A challenge with the optimization of the parameters in (5)
is the risk of overfitting to noise, similar to the ones demon-
strated in deep image priors [7]. Deep image prior uses the
reduced number of iterations as the prior, which uses the prop-
erty that the network structure of CNN favors images; it takes
more iterations to fit noise. To minimize the risk of overfit-
ting, we propose to add regularization priors on the network
parameters:

{U∗,V∗} = min
θ,φ

∥∥A(UVT )−B
∥∥2 + λ1‖θ‖`1 +

λ2‖φ‖`1 , such that U = Gθ [U0] ;V = Gφ [V0]

(8)

The impact of the regularization parameters and their abil-
ity to minimize over-fitting issues are studied in the results
section.

3.3. Data acquisition and post-processing

The experimental data was obtained using FLASH sequence
on a Siemens 1.5T scanner with 34 coil elements total (body
and spine coil arrays) in the free-breathing and ungated mode
from cardiac MRI patients with a scan time of 42 seconds
per slice; the study was an add-on to the routine cardiac MRI
exams. Each frame was sampled by two k-space navigator
spokes, oriented at 0 degrees and 90 degrees respectively.
The protocol was approved by the Institutional Review Board
(IRB) at the University of Iowa. The sequence parameters
were: TR/TE 4.68/2.1 ms, FOV 300 mm, base resolution
256, slice thickness 8 mm. A temporal resolution of 46.8 ms
was obtained by sampling 10 lines of k-space per frame. The
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Fig. 2. (a) shows the SNR curves of DIP and DEBLUR meth-
ods. Their corresponding initial and peak values images are shown
in (c)-(f). The image with the green border (c) corresponds to the
DIP initialization with random weights, while the final DIP solution
from 600 epochs is shown in (d). The use of the pre-trained parame-
ter yields (e) while optimizing the parameters during reconstruction
significantly improve the performance as seen from (f). We note
the absence of artifacts and sharper features in (f). (b) shows the
benefits of using l1 regularization on network parameters. Dotted
line shows the plot of DEBLUR method without any regularization.
Other curves show l1 regularization on U CNN network (λ1=0.001),
V CNN network (λ2=0.01) and both (λ1=0.001, λ2=0.01). Use of
l1 regularization provides the benefits of improved SNR and stable
convergence.

scan parameters were kept same across all patients. To reduce
the computational complexity, we combined the data from 34
channels to seven using principal component analysis. For the
experiments in this work, we retained the initial 10 seconds of
the original acquisition.

4. RESULTS
4.1. Impact of Pre-training and benefit of training during
reconstruction
To show the benefit of pre-training, we have compared our
proposed method with the DIP method. Fig 2 (a) shows the
plot of SNR values with respect to the number of epochs and
with initial and peak SNR values are indicated by different
color stars. Fig 2(c)-(f) show the corresponding images at the
initial and peak values respectively. Since the DIP method
is initialized with the random network weights, therefore, it
starts with the low SNR as compared to the DEBLUR method,
which utilizes the pre-trained network as indicated in Eq. 7.
Fig 2(e) shows the output of pre-trained network which indi-
cates the benefit of using pre-training in our method.

4.2. Impact of regularization
Fig 2(b) shows the impact of regularization on the deep
learned priors. We have compared four cases as mentioned
below:
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Fig. 3. Performance comparison of the low-rank method, SToRM method (10s) and the proposed method. SToRM reconstruction with 40s
of acquisition data is used as a ground truth. We observe that DEBLUR gives better image quality with less blurring as compared to the other
methods.

1. Without regularization and pretrained weights

2. With l1 regularization on U network parameters and
pretrained weights

3. With l1 regularization on V network parameters and
pretrained weights

4. With l1 regularization on both U and V network pa-
rameters with pretrained weights.

Fig 2(b) clearly shows the benefit of using regularization on
network parameters. It provides better SNR values and also
stabilizes the convergence to avoid the early stopping require-
ment of the DIP method.

4.3. Comparison with other methods
To show the performance of our proposed method, we com-
pare DEBLUR method with the SToTM and low-rank recon-
structions. Since ground truth is not available, we have used
SToRM 42sec acquisition as a ground truth. We have shown
two frames (end of diastole and end of systole) from each
method to show the comparison. DEBLUR provides better
spatial quality as compared to the low-rank and SToRM (10s)
methods as shown in the Fig. 3.
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7. CONCLUSION
In this paper, we have proposed a new cardiac cine MRI re-
construction method based on bilinear unsupervised learning.

Deep Regularized spatial and temporal priors used to recon-
struct the undersampled MR data. Results show that our CNN
priors with l1 norm on the learning parameters give better
performance as compared to the deep image prior. Recon-
structed cardiac CINE images show the ability of our pro-
posed method to give improved image quality as compared to
the other methods.
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