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ABSTRACT

Recent studies show the great potential of using deep-learned image regular-

ization priors in computational imaging in a variety of application areas including

remote sensing, microscopy, and medical imaging. The obtained image quality is of-

ten superior to approaches that rely on union of subspaces (UoS) priors, which are

either hand-crafted (e.g. wavelet sparsity) or shallow-learned (e.g.dictionary learn-

ing). However, the theoretical understanding of deep-learning based reconstruction

algorithms is lagging behind UoS schemes. The main objective of this thesis is to in-

troduce a union of surfaces framework, which models high-dimensional data as points

on a union of low-dimensional surfaces or manifolds. We will develop novel sampling

theoretic results and algorithmic tools for the learning of signals and functions on

surfaces. The computational structure of these methods bear remarkable similarity

to deep learning architectures, while being more amenable to theoretical analysis.

We first investigate the learning of a Union of Surfaces model from noisy and

incomplete data. We develop novel algorithms with sampling guarantees to learn

a union of surfaces representation from (a) few fully training samples, (b) and few

partially observed samples. We introduce bounds on the approximation error in rep-

resenting an arbitrary surface, and introduce algorithms that can learn the model

from noisy and missing data.

Next, we consider the learning of multidimensional functions on Union of Sur-

faces. We introduce a novel framework for the representation of multidimensional
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functions, when the domain is restricted to union of surfaces. Unlike conventional

reproducing kernel Hilbert space setting, the representation only involves a sparse

combination of training samples, whose number depends on the surface complex-

ity. Motivated by deep architectures, we will investigate the factorization of complex

functions into simpler ones, thus facilitating their compact representation and effi-

cient learning.

Finally, we develop reconstruction algorithms, which combine the learned gen-

erative models as priors with the imaging physics. The framework is then used to

enable free breathing and ungated multicontrast cardiac MRI reconstructions from

highly undersampled measurements.
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PUBLIC ABSTRACT

The last decade has witnessed extensive research on computational imaging,

where faster and cheaper acquisition methods are combined with computational al-

gorithms to dramatically improve spatial and temporal resolution of images, while

reducing the cost of scan and hardware. The standard practice is to pose the recov-

ery as an optimization problem, where the cost function is sum of a data consistency

term and an image prior. Hand-crafted (e.g. sparsity in the wavelet domain) and

shallow-learning (e.g dictionary learning, low-rank methods) priors have been exten-

sively studied. Most of these methods rely on a union of subspaces signal represen-

tation, which assumes that the signal can be represented by the linear combination

of vectors from union of subspaces. These approaches are now well-understood with

theoretical guarantees, fast algorithms, and commercial products in several areas, in-

cluding magnetic resonance imaging (MRI). However, recent empirical studies have

shown the significcantly superior performance of non-linear deep architectures for re-

covery and inference in a wide range of application areas. The improved performance

of these algorithms over union of subspaces schemes may be attributed to their abil-

ity of the associated prior terms to exploit the complex non-linear redundancies in

the data. Unfortunately, current deep architectures do not enjoy a sound theoretical

understanding compared to union of subspaces methods.

In this thesis, we develop a continuous-domain framework to exploit the non-

linear dependencies in high-dimensional image data, with the focus of using it in
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computational imaging applications. We model the data as points on a union of sur-

faces. The focus of this thesis is to bridge the gap between well-understood union

of subspaces (compressed-sensing) frameworks and deep learning methods that of-

fer great empirical performance. The proposed framework is then extended to yield

a more efficient and theoretically-founded framework for MRI data with non-linear

structure.
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vectors of the ith slice and time instant t, denoted by zi,t, are fed into the deep

generative model Gθ, which generates the multi-slice image volume ρi,t = Gθ[zi,t].
The latent vectors zi,t and the parameters θ of the generative model are learned
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i

∑
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reconstructions. Since the latent vectors in this case have different distributions,
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the latent vectors corresponding to slice 3 into the generator. From the plots
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CHAPTER 1

INTRODUCTION

1.1 Overview

The last decade has witnessed extensive research on computational imaging,

where faster and cheaper acquisition methods are combined with computational al-

gorithms to dramatically improve spatial and temporal resolution of images, while

reducing the cost of scan and hardware. The standard practice is to pose the recov-

ery as an optimization problem, where the cost function is sum of a data consistency

term and an image prior. Hand-crafted (e.g. sparsity in the wavelet domain) and

shallow-learning (e.g dictionary learning, low-rank methods) priors have been exten-

sively studied. Most of these methods rely on a union of subspaces (UoS) signal

representation, which assumes that the signal can be represented by the linear combi-

nation of vectors from union of subspaces. These approaches are now well-understood

with theoretical guarantees, fast algorithms, and commercial products in several ar-

eas, including magnetic resonance imaging (MRI). However, recent empirical studies

have shown the significcantly superior performance of non-linear deep architectures

for recovery and inference in a wide range of application areas. The improved per-

formance of these algorithms over union of subspaces schemes may be attributed to

their ability of the associated prior terms to exploit the complex non-linear redun-

dancies in the data. Unfortunately, current deep architectures do not enjoy a sound

theoretical understanding compared to union of subspaces methods. Therefore, an

improved theoretical understanding of deep learning priors and their usage in image
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recovery is desirable to optimize them for improved performance.

The learning of continuous functions from the training data have been ex-

tensively studied in the context of reproducing kernel Hilbert spaces (RKHS). The

functions are recovered as a linear combination of basis functions, whose number is

equal to the number of training points; the computational structure resembles the

single hidden-layer neural network, whose number of nodes is equal to the number

of training points. The usage of sparse machines and random features have been

introduced to reduce the number of basis functions. While they do not enjoy the

optimality of the RKHS solution, their empirical performance is often superior. Note

that these methods essentially rely on a low-rank approximation of the kernel matrix.

But an improved understanding of when and why low-rank kernels yield improved

performance is desirable.

1.2 Background

Machine learning methods are usually explained by the widely accepted man-

ifold assumption: the probability distribution p(x) of the high dimensional data is

concentrated around a non-linear low-dimensional manifoldM. For instance, the en-

coder in an auto-encoder learns the non-linear mapping E :M→ L, where L is the

latent space. The decoder D : L →M maps the data back to the original space, thus

learning a one-to-one mapping between M and L. The rectified linear unit (ReLU)

based network relies on a piecewise linear model to represent E and D. Both of these

relations imply that M is a smooth non-linear manifold or surface, parametrized by

L.
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Manifold methods, which rely on the above assumption, have a long history

in machine learning and signal processing for data visualization, feature extraction

and etc.. A popular approach is to discretize the problem as a weighted data graph

from the data samples, whose connectivity reflects the neighborhood structure on the

manifold.

The recovery of continuous functions from their T discrete samples (training

data) (xi, yi) is extensively studied in the context of RKHS. The celebrated representer

theorem states that if k is a positive definite kernel and K is the associated RKHS,

the solution to

f ∗ = arg min
f

T∑
i=1

||f(xi)− yi||2 + γ||f ||2K (1.1)

is given by f(x) =
∑T

i=1 αik(x,xi). Note that the above solution mimics a one layer

neural network, where the number of hidden nodes is the number of training points

T . The challenge with these approaches is the very large T in applications. While

sparsity prior can be used during the learning, the solution does not match the solution

of (1.1). The approximation of the solution using R << T random features, which

amounts to a low-rank approximation of the kernel is considered in [105]. A surprising

result is that the approximation often outperforms the true solution using R function

evaluations. An improved understanding of when and why low-rank kernels yield

good performance is desirable and it will be considered in this thesis.

1.3 Recovery of union of surfaces from noisy and sparse data

We develop theory and algorithms to learn a union of surfaces model from

training data. We consider the learning from few clean training points as well as
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training data corrupted by noise and missing entries.

For the 2D case, where we have a union of curves, we relied on a generalization

of the Bezout’s theorem to determine the minimum number of samples needed for the

learning of union of curves. This part of the work is an extension of the past work on

continuous-domain compressed sensing methods for image super-resolution [83–86].

Note that the results obtained from the Bezout’s theorem give us the worst-case

guarantee for the learning of union of curves. We generalize the results to high

dimensions (dimension > 2). The extension of the planar results to high dimensional

setting is not a straight-forward extension. The first challenging is that the direct

extension of Bezout’s Theorem to higher dimensions cannot be readily used in the

higher dimensional setting. Another challenge with our 2-D result is the conservative

nature of our worst-case bound.

These challenges can be overcome by seeking an average case result. Rather

than relying on the worst-case setting in the planar case, we will approach the proof

from a probabilistic setting. Specifically, the probability that randomly drawn points

on a surface overlapping with a low-degree curve/surface is expected to be small.

We are encouraged by similar theoretical results in the context of algebraic geome-

try, which provides high probability recovery whenever the number of measurements

exceed the degrees of freedom.

In practice, usually the samples that we have are corrupted by noise. To

improve the robustness to noise, we solve

X∗ = arg min
X
||X−Y||2F + λ||Φ(X)||∗,
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where || · ||∗ is the nuclear norm that is the surrogate for the rank. Such nuclear

norm minimization schemes are widely used to improve the robustness of finite rate

of innovation schemes. This approach yields good empirical recovery of surfaces from

highly noisy data.

1.4 Learning functions on union of surfaces

We develop theory and algorithms for the efficient representation of functions,

whose domain is restricted to union of surfaces. Unlike the conventional RKHS the-

ory, the number of kernel evaluations does not depend on the number of training

data points, but on the complexity (rank) of the union of surfaces. In addition to

making the framework practical, the low-rank structure of the features enables us to

introduce perfect recovery guarantees from finite number of labeled training points.

We also exploit the property of exponentials described before to factorize complex

functions as products of simpler functions, which translate to a simpler computa-

tional structure. Since the computational structure is essentially a one-layer neural

network, we expect the theoretical tools to shed valuable insights on the trade-offs in

deep learning architectures.

1.5 Model based computational imaging using union of surfaces prior

We use the learned union of surfaces generative prior in computational imaging

applications. We develop a framework for dynamic MRI by modeling the images in

the time series as points on a union of surfaces. The central hypothesis is that the

time profiles of the dataset are smooth non-linear functions of a few latent variables

(e.g. cardiac/respiratory phases and MR parameters) and hence can be modeled as
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points on a union of surfaces, which can be learned from the highly undersampled k-t

space data.

Specifically, we assume that the dynamic image volumes in the dataset are

smooth non-linear functions of a few latent variables, i.e., xt = Gθ(zt), where zt are the

latent vectors in a low-dimensional space. xt is the t-th generated image frame in the

time series. This explicit formulation implies that the image volumes lie on a smooth

non-linear union of surfaces in a high-dimensional ambient space. The latent variables

capture the differences between the images (e.g., cardiac phase, respiratory phase,

contrast dynamics, subject motion). We model the G using a convolution nerual

network (CNN), which offers a significantly compressed representation. The compact

model proportionately reduces the number of measurements needed to recover the

images. In addition, the compression also enables algorithms with much smaller

memory footprint and computational complexity. We propose to jointly optimize for

the network parameters θ and the latent vector zt based on the given measurements.

The smoothness of the surfaces generated by Gθ(z) depends on the gradient of Gθ

with respect to its input. To enforce the learning of a smooth image surface, we

regularize the norm of the Jacobian of the mapping ‖JzGθ‖2. Similarly, the images in

the time series are expected to vary smoothly in time. Hence, we also use a Tikhonov

smoothness penalty on the latent vectors zt to further constrain the solutions. We use

the ADAM optimizer with stochastic gradients, where random batches of zi and bi are

chosen at iteration to determine the parameters. Unlike traditional CNN methods

that need extensive fully-sampled training data, this approach recover the images
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relying only on the highly undersampled k-t space data.

1.6 Aligned & jointly recovery of multi-slice data using union of
surfaces model

Continuing to the work introduced in the last section, we further use the union

of surfaces model for the aligned and jointly recovery of the multi-slice dynamic MRI

data. We again model the images in the time series as points on a union of surfaces.

We note that for the multi-slice data, the cardiac and respiratory motion during the

acquisition of the different slices are different. So we will use different latent vectors

for each slice, while the generator will be the same for all volumes. The parameters

of the generator and the latent time-series for each slice are jointly learned from the

measured data of all the slices. As mentioned above, the manifold approaches suffer

from the high memory demand. While for the proposed scheme, the memory footprint

of the algorithm is determined by the network parameters θ and the latent vectors z,

and hence is orders of magnitude smaller than that of manifold approaches.
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CHAPTER 2

RECOVERY OF UNION OF SURFACES FROM NOISY AND SPARSE
DATA: THEORY AND ALGORITHMS

2.1 Introduction

The recovery of surfaces from finite number of unorganized and noisy points

is an important problem, with applications to computer vision [16, 53] and image

processing [31,51,130]. This problem is fundamentally ill-posed because one can find

infinite number of surfaces that pass through the measured points. In addition, the

reconstruction is challenging due to surface topology (e.g. the shape of the surface),

and the variation of topology with noise. Popular approaches for shape representation

with arbitrary topology include (a) explicit representations using a mesh or graphs

[9, 16], and (b) implicit level-set representations [4, 12, 18]. In the first scheme, the

shape is constructed from the noisy points as a graph, where the nodes corresponding

to adjacent data points are connected. In the second approach, level set functions

are constructed from the points [128]. Several methods were introduced to account

for noisy data, including spectral graph theory, Laplacian/curvature flow [25,82]. All

of these methods suffer from the inherent parametrization of the surface, which often

depends on the sampling density.

The main focus of this chapter is to introduce a unified continuous domain

theory for the recovery of union of surfaces. We assume that the points live on a

surface, which is the zero level set of a bandlimited function ψ. This property enables

us to express ψ as a finite linear combination of complex exponentials, where the
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weights are specified by the vector c. The bandwidth of ψ denoted by Λ is a measure

of the complexity of the surface [83]. When ψ is irreducible, we term the surface as

an irreducible surface. When ψ can be factorized into multiple irreducible factors, we

obtain an union of irreducible surfaces; each of the irreducible factors correspond to

a closed connected surfaces.

The function ψ vanishes at all points x on the surface; i.e, ψ(x) = 0. This

implies that the weighted linear combination of complex exponential features of the

point exp
(
j2πkTx

)
; k ∈ Λ, weighted by c, will vanish for all points on the surface.

In particular, c is the normal vector to the complex exponential features of the points

on the surface. We term this property as the annihilation relation, which suggests

that the complex exponential maps of the points on the surface lie in a subspace,

whose normal vector is c. Thus, the non-linear exponential mapping transforms the

non-linear surface structure to the familiar low-rank or subspace structure, which

well-is studied in signal processing. When we have a union of irreducible surfaces, the

samples from each one of the irreducible components lie on a subspace; the mapping

transforms the complex structure to a union of subspaces structure [36]. The dimen-

sion of the subspace spanned by the feature maps is dependent on the bandwidth Λ,

and hence the complexity of the surface.

We use the subspace structure of the feature vectors to recover the surface

from a few measurements. Specifically, we identify the coefficient vector as the unit

norm null space vector of the feature matrix, which is unique up to a scaling with

magnitude one. We also introduce efficient strategies when the bandwidth of the
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surface is unknown. Specifically, we show that when the support is overestimated,

there exist multiple linearly independent filters that will annihilate the exponential

maps; the common zeros, or equivalently the zero level set of the greatest common

divisor of the filters, uniquely specifies the surface in this case.

When the support is overestimated, the feature matrix has multiple linearly

independent null-space vectors, and hence is low-rank. We note that the Gram matrix

of the exponential features correspond to a kernel matrix, which connects the band-

limited surface model with widely used non-linear low-rank kernel methods [114].

When the surface samples are noisy, we rely on a nuclear norm minimization for-

mulation to denoise the points. Specifically, we seek to find the denoised surface

samples such that their feature vectors form a low-rank matrix. We use an itera-

tive re-weighted algorithm to solve the above optimization problem, which alternates

between the estimation of a weight matrix that approximates the null-space and a

quadratic sub-problem to recover the data. We note that the iterative algorithm

bears strong similarity to Laplacian/curvature flows used in graph denoising, which

provides the connection between implicit level-set and explicit graph-based surface

representations. One can also derive a graph Laplacian matrix from the weight ma-

trix, which will facilitate the smoothing of signals that live on the nodes of the graph.

This graph can be viewed as a discrete mesh approximation to the points that live on

the surface. Our experiments show that the Laplacian matrix obtained by solving the

proposed optimization algorithm is more representative of the graph structure than

classical methods [10], especially when it is estimated from noisy data. This frame-
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work reveals links between recent advances in superresolution theory [21, 85, 113],

manifold smoothness based regularization, as well as graph signal processing [120].

This work has connections with Logan’s results [67] for the recovery of 1-

D band-limited functions from their zero crossings, as well as their extensions to

2-D [147]. The main challenge of these works is the extreme sensitivity of the band-

limited function to the location of the zero-crossings, when no amplitude information

of the signal is used [147]; this has prompted the use of additional information in-

cluding multi-level contours [147] and multi-scale edges [71]. By contrast, we focus

on the recovery of the surface itself, rather than the band-limited function, which

is considerably simpler. Specifically, we propose to recover the surface as the zero

level set of the sum of squares of all band-limited functions that satisfy the sampling

conditions. In addition, unlike [147], our results are also valid for the union of ir-

reducible surfaces. The proposed work is built upon our prior work on annihilation

based super-resolution image recovery [76, 83–87] that has similarities to algebraic

shape recovery [37] and the recent work by Ongie et al., which considered polynomial

kernels [87]. Our main focus is to generalize [87] to shift invariant kernels, which are

more widely used in applications.

2.2 Parametric surface representation

In this work, we use the level set representation to describe a (hyper-)surface.

We model a (hyper-)surface S in [0, 1)n;n ≥ 2 as the zero level set of a function ψ:

S[ψ] = {x ∈ Rn|ψ(x) = 0}. (2.1)
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For example, when n = 2, S is a (hyper-)surface of dimension 1, which is typically a

curve. We note that the level set representation is widely used in image segmentation

[64]. The normal practice in image segmentation is the non-parametric level set

representation of a time-dependent evolution function ψ, which results in the PDE-

driven models. Note that the initialization of these models affects the stability and

the rate of convergence of the methods. So good initialization of level set functions

is usually a requirement for good segmentation.

Several authors have recently proposed to represent the level set function ψ as

a linear combination of basis functions ϕk(x) [13,140]. These schemes argue that the

reduced number of parameters translate to fast and efficient algorithms. Besides, we

do not require the good initialization in this setting. Motivated by these schemes, we

represent ψ(x) as

ψ(x) =
∑
k∈Λ

ck ϕk(x). (2.2)

Since the level set function is the linear combination of some basis functions, we term

the corresponding zero level set as parametric zero level set. We note that the surface

properties would depend on the specific basis functions and will indeed decide the type

of the kernel used in the algorithms in Section 2.6. We now provide some examples

of parametric representations, depending on the choices of the basis functions.

2.2.1 Band-limited surface representation

We assume that the surface is within [0, 1)n. A well-studied representation

for support limited functions is the Fourier exponential basis, which is widely used



13

in digital image processing [92, 124, 155], biomedical image processing [88, 101, 125],

and geophysics [106]. The level set function can be assumed to be band-limited [88],

when ψ is expressed as a Fourier series:

ψ(x) =
∑
k∈Λ

ck exp(j2πkTx), x ∈ [0, 1)n. (2.3)

In the above representation, the set Λ denotes the bandwidth of the Fourier coefficients

c = {ck : k ∈ Λ}; its cardinality |Λ| is the number of free parameters in the surface

representation. We refer to Λ as the Fourier support of ψ and we note that we

always choose the support to be symmetric with respect to the origin. This choice

is governed by the relation of this representation with polynomials, described in the

next subsection. The extension of Λ governs the degree of the polynomial.

In this work, we focus on the Fourier series representation due to its key

benefits including well-developed theoretical tools, fast algorithms such as fast Fourier

transform, orthogonality, and the property that | exp(j2πkTx)| = 1, which results in

stable representations and also facilitate the theory.

2.2.1.1 Relation of bandlimited representation with polynomials

We also note that bandlimited representations (2.3) have an intimate relation

with polynomials [88]. In particular, we note that one can transform the polynomial

basis to an exponential one by the one-to-one mapping νi : [0, 1)→ {z ∈ C : |z| = 1}:

νi(xi) = exp(j2πxi) =: zi. (2.4)
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We will make use of this correspondence to study the properties of the zero sets of

(2.3). With this transformation, the representation (2.3) simplifies to the complex

polynomial denoted as P [ψ], which is of the form

P [ϕ](z) =
∑
k∈Λ

ck

n∏
i=1

zkii . (2.5)

Since the mapping involves powers of zi, where zi are specified by the trigonometric

mapping (2.4), we term the expansion in (2.3) as a trigonometric polynomial.

We note that the mapping ν = (ν1, · · · , νn) defined by (2.4) is a bijection from

[0, 1)n onto the complex unit torus Tn = {(z1, · · · , zn) : |zi| = 1, i = 1, · · · , n}. Hence,

ψ(x) = 0 ⇔ P [ψ][z] = 0 on Tn, where zi = νi(xi), i = 1, · · · , n, (2.6)

which implies that there is a one-to-one correspondence between the zero sets of ψ and

the zeros of P [ψ] on the unit torus. Accordingly, we can study the algebraic properties

of trigonometric polynomials and their zero sets by studying their corresponding

complex polynomials under the mapping ν.

2.2.1.2 Non-uniqueness of level-set representation

We first show that the level set representation of a surface in (2.3) may not

be unique, when the bandwidth of the representation is larger than the minimal

one required to represent the surface. We first note that the function ψ(x) with

bandwidth Λ in (2.3) can be expressed with a larger bandwidth Γ ⊃ Λ by zero filling

the additional Fourier coefficients:

ψ(x) =
∑
k∈Γ

c̃k exp(j2πkTx), x ∈ [0, 1)n, (2.7)
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where the coefficients set c̃ is the zero-filled version of the vector c, denoted by

c̃ ∈ C|Γ|:

c̃k =

{
ck if k ∈ Λ

0 else
. (2.8)

We note that the representation of the surface by functions with the larger bandwidth

Γ is not unique. In particular, any uniform shift of the coefficients in the Fourier

domain corresponds to a phase multiplication in the space domain:

ϕ′ = ϕ · exp(j2πkT0 x); k0 ∈ Γ	 Λ. (2.9)

Since | exp(j2πkT0 x)| = 1, ∀x, we can see that the zero sets of ϕ′ are identical to that

of ϕ.

Because the exponentials exp(j2πkT0 x) are orthogonal to each other, the func-

tions ϕ′ that has the same zero set as ϕ lives in a subspace of dimension Γ	Λ. Here,

Γ	 Λ denote the set of all valid uniform shifts k0 of Λ, denoted by Λ + k0, that are

contained in Γ. We will introduce the set Γ	 Λ with more details in §2.3.1.2.

2.2.1.3 Minimal bandwidth representation of a surface

We note from the previous section that the multiplication with the phase term

in (15) corresponds to multiplying the trigonometric polynomial in (2.5) by zk0 ; the

degree of the resulting trigonometric polynomial ϕ′ will be greater than that of ϕ. In

this section, we show that out of all these polynomials, the one with smallest degree

is unique. More importantly, the bandwidth of the above minimal polynomial can

be used as a measure of the complexity of the surface. Specifically, a more complex

surface would correspond to a polynomial with a larger bandwidth.
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The following result shows that for any given surface S, there exists a unique

level set function ψ, whose coefficient set {ck : k ∈ Λ} has the smallest bandwidth.

Proposition 1. For every (hyper-)surface S given by the zero level set of (2.7),

there is a unique (up to scaling) minimal trigonometric polynomial ψ, which satisfies

ψ(x) = 0; ∀x ∈ S. Any other trigonometric polynomial ψ1 that also satisfies ψ1(x) =

0;∀x ∈ S will have BW (ψ1) ⊇ BW (ψ). Here, BW (ψ) denotes the bandwidth of the

function ψ.

As seen from (15), the coefficients of ψ1 can be the shifted version of the

coefficients of ψ. Thus, the Fourier support of ψ1 is larger than (contains) the Fourier

support of ψ; the degree of the trigonometric polynomial ψ1 is larger than the degree of

the minimal polynomial ψ, which has the smallest degree or equivalently bandwidth.

In this sense, the minimal polynomial ψ is unique, up to scaling. The proof of this

result is given in Appendix 2.8.6. We refer to the ψ of the form (2.3) with the minimal

bandwidth Λ that satisfy

ψ(x) = 0; ∀x ∈ S (2.10)

as the minimal trigonometric polynomial of the surface S.

In other words, when ψ is the minimal trigonometric polynomial of a surface

S, it does not have a factor with no zeros (i.e., never vanishes or vanishes only at

isolated points on [0, 1)n). In particular, if a polynomial has a factor with no zeros in

[0, 1)n, one can remove this factor and obtain a polynomial with a smaller bandwidth

and with the same support set. Note from (2.5) that the minimal trigonometric

polynomial will correspond to P [ψ] being a polynomial with the minimal degree.
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As mentioned at the beginning of this section, the bandwidth Λ of the mini-

mal polynomial of the surface S grows with the complexity of S; a more oscillatory

surface with a lot of details corresponds to a high bandwidth minimal polynomial,

while a simple and highly smooth surface corresponds to a low bandwidth minimal

polynomial. We hence consider |Λ| as a complexity measure of the surface. Further-

more, we note that the surface model can approximate an arbitrary closed surface

with any degree of accuracy, as long as the bandwidth is large enough [88]. One can

refer to Fig.2 in [88] for illustration in 2D and see Fig. 2.1 for illustration in 3D. Here

we illustrate this idea in 2D/3D for simplicity, but the approach is general for any

dimensions.

(a) 17× 17× 17 coeff. (b) 25×25×25 coeff. (c) 33× 33× 33 coeff.

Figure 2.1. Illustration the fertility of our level set representation model in 3D.
The three examples show that our model is capable to capture the geometry of the
shape even though the shape has complicated topologies, which demonstrated that
the representation is not restrictive.

2.2.1.4 Irreducible bandlimited surfaces

We now introduce the concept of irreducible polynomials, which is important

for our results. We term a surface to be irreducible if its minimal trigonometric
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polynomial is irreducible. A polynomial is irreducible if it cannot be factorized into

smaller factors, whose zero sets are within [0, 1)n. Most of the irreducible surfaces

are simply connected (i.e., consist of a single connected component 1). Intuitively,

a general surface may be composed of several connected components, where each

connected component is irreducible. In this case, we term the above surface as the

union or irreducible surfaces. The minimal polynomial of the union of irreducible

surfaces will be the product of the irreducible minimal polynomials of the individual

connected components. The following definitions puts the above explanations into

more concrete terms:

Definition 2. A surface is termed as irreducible, if it is the zero set of an irreducible

trigonometric polynomial.

Definition 3. A trigonometric polynomial ψ(x) is said to be irreducible, if the corre-

sponding polynomial P [ψ] is irreducible in C[z1, · · · , zn]. A polynomial p is irreducible

over a field of complex numbers, if it cannot be expressed as the product of two or

more non-constant polynomials with complex coefficients.

When ψ can be written as the product of several irreducible components ψ =∏m
i=1 ψi, then S[ψ] is essentially the union of irreducible surfaces:

S[ψ] =
m⋃
i=1

S[ψi]. (2.11)

1One can come up with counter examples of irreducible polynomials with multiple com-
ponents. In this work, one can ignore these pathological counter examples and assume that
an irreducible bandlimited surface will consist of only one connected component.
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2.3 Lifting mapping and low-dimensional feature spaces

In this section, we show that there exists a non-linear transformation, which

maps the points on an irreducible surface to a low-dimensional subspace. The trans-

formation is intimately tied in with the specific choice of basis functions used to

represent the surface. Our results show that the dimension of the subspace depends

on the complexity of the surface, or equivalently the bandwidth of the minimal poly-

nomial. We can use the rank of the feature matrix as a surrogate of the complexity of

the surface to recover it, much like sparsity is used to recover signals in compressed

sensing.

Consider the non-linear lifting mapping ΦΓ : [0, 1]n → C|Γ|, obtained by eval-

uating the basis functions at x:

ΦΓ(x) =

 ϕk1(x)
...

ϕk|Γ|(x))

 . (2.12)

We can view ΦΓ(x) as the feature vector of the point x, analogous to the ones used

in kernel methods [114]. Here, |Γ| denotes the cardinality of the set Γ. We denote

the set

VΓ(S) = {ΦΓ(x)|x ∈ S} (2.13)

as the feature space of the surface S. Since any point on a surface S satisfies (2.1),

the feature vectors of points from S satisfy

cTΦΓ(x) = 0, ∀x ∈ S, (2.14)

where c is the coefficients vector in the representation of ψ in (2.3). The above relation

is illustrated in Fig. 2.2.
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Figure 2.2. Illustration of the annihilation relations in 2D. We assume that the curve
is the zero level set of a band-limited function ψ(x), shown by the red function in the
top left and the plane slicing the function gives us the level set of the function. The
Fourier coefficients of ψ, denoted by c, are support limited in Λ, denoted by the red
square on the figure in the bottom right. Each point on the curve satisfies ψ(xi) = 0.
Using the representation of the curve, we thus have cTφΛ(xi) = 0. Note that φΛ(xi)
is the exponential feature map of the point xi, whose dimension is specified by the
cardinality of the set Λ. This means that the feature map will lift each point in
the level set to a Λ dimensional subspace whose normal vector is specified by c, as
illustrated by the plane and the red vector c in the top right. Note that if more
than one closed curve are presented, each curve will be lifted to a lower dimensional
subspace in the feature space, as shown by the two lines in the plane, and the lower
dimensional spaces will span the Λ dimensional subspace.

The relation (2.20) also implies that c is orthogonal to all the feature vectors

of points living on S and hence a feature matrix constructed from points on the

surface is rank deficient by one; i.e., the dimension of the feature space is at most

|Γ| − 1. However, we now show that the feature matrix is often significantly low-

rank depending on the geometry of the surface and the specific representations of the

surface.
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2.3.1 Band-limited surface representation

We now consider the case of an arbitrary point x on the zero level set of ψ(x)

with bandwidth Λ. Using (2.7), the lifting is specified by:

ΦΛ(x) =


exp(j2πkT1 x)
exp(j2πkT2 x)

...
exp(j2πkT|Λ|x)

 . (2.15)

We note from (2.15) that the lifting Φ can be evaluated with a larger bandwidth

Γ ⊃ Λ. When the lifting is performed with the minimal bandwidth (i.e., Γ = Λ), we

term the corresponding lifting as the minimal lifting.

We now analyze the dimension of the feature space VΛ(S) for the minimal

(Γ = Λ) and non-minimal lifting ( Λ ⊂ Γ) cases. In both cases, we will show that the

feature space is low-dimensional and is a subspace of C|Λ|.

2.3.1.1 Irreducible surface with minimal lifting (Γ = Λ)

We first focus on the case where ψ is an irreducible trigonometric polynomial

and the bandwidth of the lifting is specified by Λ, which is the bandwidth of the

minimal polynomial. The annihilation relation (2.20) implies that c is orthogonal to

the feature vectors ΦΛ(x). This implies that

dim(VΛ) ≤ |Λ| − 1. (2.16)

2.3.1.2 Irreducible surface with non-minimal lifting (Γ ⊃ Λ)

We now consider the setting where the non-linear lifting is specified by ΦΓ(x),

where Λ ⊂ Γ. Because of the annihilation relation, we have

c̃T ΦΓ(x) = 0,



22

where c̃ is the zero filled coefficients in (2.7). Since the zero set of the function

ψk0(x) = ψ(x) · exp(j2πkT0 x) is exactly the same as that of ψ, we have

∑
k

ck−k0 exp(j2πkTx) = 0; ∀x ∈ S[ψ]. (2.17)

This implies that any shift of c̃ within Γ 	 Λ, denoted by d̃k = ck−k0 will satisfy

d̃T ΦΓ(x) = 0. It is straightforward to see that d̃ and c̃ are linearly independent for

all values of k0. We denote the number of possible shifts such that the shifted set

Λ + k0 is still within Γ (i.e., Λ + k0 ⊆ Γ ) by |Γ	 Λ|:

Γ	 Λ = {l ∈ Γ | l− k ∈ Γ,∀k ∈ Λ}. (2.18)

This set is illustrated in Fig. 2.3 along with Γ and Λ. Since the vectors ck−k0 are

Local function representation

Inner products with
anchor patches, followed

by non-linearity

Single layer neural network  

 
� ⇤

Figure 2.3. The non-minimal filter bandwidth Γ (green) is illustrated along with the
minimal filter bandwidth Λ (red). The set Γ	 Λ (blue) contains all indices at which
Λ can be centered, while remaining inside Γ.

linearly independent and are orthogonal to any feature vector ΦΓ(x) on S[ψ], the

dimension of the subspace is bounded by

dim(VΓ) ≤ |Γ| − |Γ	 Λ|. (2.19)
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2.3.1.3 Union of irreducible surfaces with Γ ⊃ Λi

When ψ =
∏m

i=1 ψi, each irreducible surface S[ψi] will be mapped to a subspace

of dimension |Γ| − |Γ 	 Λi|. This implies that the non-linear lifting transforms the

union of irreducible surfaces to the well-studied union of subspace model [44,68,73].

2.4 Worst-case guarantees for curve recovery

2.4.1 Annihilation relations for points on the curve

Let us now consider a set of N points on the curve, denoted by x1, · · · ,xN .

Note that the feature maps of each one of the points satisfy the above annihilation

relations, which can be compactly represented as:

cT
[
φΛ(x1) φΛ(x2) . . . φΛ(xN)

]︸ ︷︷ ︸
ΦΛ(X)

= 0. (2.20)

Here, ΦΛ(X) is the feature matrix of the points and X = [x1 x2 . . . xN ].

Assume that we have a union of irreducible curves, where the bandwidth of

each of the irreducible components C[ηi] is Λi and bandwidth of C[ψ] is Λ. In this

case, the |Λi| dimensional lifting ΦΛi
(x) of the samples on C[ηi] will lie on a |Λi| − 1

dimensional subspace. Similarly, the |Λ| dimensional lifting ΦΛ(x) of the samples on

the union of irreducible curve C[ψ] will lie on a |Λ| − 1 dimensional subspace.

2.4.2 Curve recovery from samples

When ΦΛ is rank-deficient by one, the coefficient vector c can be identified as

the unique non-zero null-space basis vector of ΦΛ(X). This implies that the features lie

in an |Λ| − 1 dimensional subspace, whose normal is specified by c. This annihilation

relation is illustrated in Fig 2.2, in the context of band-limited curves considered in

the next subsection.
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In practice, the points are often corrupted by noise. In the presence of noise,

the null-space conditions are often not satisfied exactly. In this case, we can pose the

least square estimation of the coefficients from the noisy data points {xi}Ni=1 as the

minimization of the criterion:

C(c) =
N∑
i=1

‖ψ(xi)‖2 = cTQΛc (2.21)

where QΛ =
∑N

i=1 φΛ(xi)φΛ(xi)
T . To eliminate the trivial solution c = 0, we pose

the recovery as the constrained optimization scheme:

c∗ = arg min
c

cT QΛ c such that ‖c‖2 = 1 (2.22)

The solution is the eigenvector corresponding to the minimum eigenvalue of QΛ. Note

that QΛ is nothing but ΦΛ(X)ΦT
Λ(X). Thus we just need to use the singular value

decomposition of ΦT
Λ(X) to obtain the desired solution.

2.4.3 Irreducible band-limited planar curve: sampling theorem

We now focus on the problem of the recovery of the curve, given a few points

{xi ∈ R2; i = 1, · · · , N} on the curve. Let us take the band-limited curve representa-

tion for the rest of the section to derive our sampling conditions. We now determine

the sampling conditions for the perfect recovery of the curve ψ(x) = 0 using (2.22).

In this case, the annihilation relation is satisfied with the feature maps defined as

φΛ(x) =

 exp(j 2πkT1 x)
...

exp(j 2πkT|Λ|x)

 (2.23)

We also assume that Λ is a rectangular neighborhood in Z2 of size k1×k2. We

first review some results from algebraic geometry.
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There is a one-to-one correspondence between trigonometric polynomials and

complex polynomials. We use the extension of Bézout’s inequality for trigonometric

polynomials, which bounds the number of solutions of the system µ(x) = η(x) = 0

that do not have any common factors.

Lemma 4 (Bézout’s inequality for band-limited polynomials). Let µ(x) and η(x)

be two band-limited polynomials, whose Fourier coefficients are support limited to

k1 × k2 and l1 × l2, respectively. If µ and η have no common factor, then the system

of equations

µ(x) = η(x) = 0 (2.24)

has a maximum of (k1 + k2)(l1 + l2) = deg(µ)deg(η) solutions in [0, 1)2.

The proof of Lemma 4 is given in Appendix 2.8.1. We use this property to

derive our main results. We first focus on the case where ψ is an irreducible band-

limited function.

Proposition 5. Let {xi}Ni=1 be N distinct points on the zero level set of an irreducible

band-limited function ψ(x),x ∈ R2, whose Fourier coefficients are restricted to a

rectangular region Λ with size k1 × k2. Then the curve ψ(x) = 0 can be uniquely

recovered by (2.20), when:

N > (k1 + k2)2 = deg2(ψ) (2.25)

The proof is provided in Appendix 2.8.2.

Note that the sampling condition for a single irreducible curve does not specify

any constraint on the distribution of points on the curve; any set of N > (k1 + k2)2
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(a) Origi-
nal curve

(b) 36
random
samples

(c) 36
samples in
left half

(d) 36
samples in
right half

Figure 2.4. Illustration of Proposition 5: We consider a curve C[ψ] given by ψ(x),

where cψ
F↔ ψ is support limited to a 3 × 3 region, shown in (a). The theorem

guarantees the perfect recovery will happen if we have no less than (k1 + k2)2 = 36
samples. We first randomly chose 36 samples on the curve. Then from these 36
randomly chosen samples, we obtained (b), which gives us perfect recovery of the
original curve. Furthermore, we mentioned that we do not require any constraint
on the distribution of samples on the curve. In (c), we randomly chose 36 samples
from the left half part of the curve and we got perfect recovery as well. In (d), 36
samples are randomly chosen from the right half of the curve. From (d), we saw that
perfect recovery of the whole curve was also obtained. For each case, the average
time required for the recovery is about 1.2 second.

points are sufficient for the recovery of the curve. This proposition is illustrated in

Fig. 2.4, which shows that the recovery is guaranteed irrespective of the distribution

of samples. This property is similar to well-known results in non-uniform sampling

of band-limited signals [72], where the recovery is guaranteed under weak conditions

on the nonuniform grid and the average sampling rate exceeding Nyquist rate.

We compare this setting with the sampling conditions for the recovery of a

piecewise constant image, whose gradients vanish on the zero level set of a band-

limited function [85]. The minimum number of Fourier measurements required to

recover the function there is |3Λ|. When k1 = k2 = K, then 9K2 complex Fourier

samples are required, which is far more than 4K2 real samples required for the re-

covery of the curve in our setting. Note that the constant values within the regions
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bounded by the curves also need to be recovered in [85], which explains the higher

sampling requirement. We note that the above bounds are looser than the ones in [91],

which are based on the number of available equations; they assume the chances of the

equations being linear dependent is unlikely [91]. Unlike the high-probability results

in [91] that our bounds are worst-case guarantees, which will hold irrespective of the

sampling geometry. We note from the experiments in Fig. 2.7 that recovery succeeds

in most cases whenever the number of samples exceed |Λ| − 1 = k1k2 − 1, which is

the number of degrees of freedom in representing the curve.

2.4.4 Union of irreducible curves: sampling theorem

We now generalize the previous result to the setting where the composite curve

is a union of multiple irreducible curves. Equivalently, the level set function is the

product of multiple irreducible band-limited functions. We have the following result

for this general case:

Proposition 6. Let {xi}Ni=1 be points on the zero level set of a band-limited function

ψ(x),x ∈ R2, where the bandwidth of ψ is specified by |Λ| = k1 × k2. Assume that

ψ(x) has J irreducible factors (i.e., ψ = η1 · · · ηJ), where the bandwidth of the jth

factor is given by k1,j × k2,j. The curve ψ(x) = 0 can be uniquely recovered by (2.20),

when each of the irreducible curves are sampled with

Nj > (k1 + k2)(k1,j + k2,j) = deg(ψ)deg(ηj); j = 1, · · · , J. (2.26)

The total number of samples needed for unique recovery is specified by

N =
J∑
j=1

Nj = deg(ψ)
J∑
j=1

deg(ηj), (2.27)
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(a) ψ(x, y) (b) ψ(x, y) = 0

(c) 10 points (d) 25 points (e) 50 points

Figure 2.5. Illustration of Proposition 6: We consider a curve C[ψ] on the top right,

where cψ
F↔ ψ is support limited to a 5 × 5 region. The level set function is shown

in the top left. We consider the recovery from different number of samples of C[ψ],
sampled randomly. The sampling locations are marked by red crosses. Note that the
theory guarantees the recovery when the number of samples exceeds (k1 + k2)2 = 100
samples. However, we observe good recovery of the curve around 50 samples. Note
that our theoretical results are worst-case guarantees, and in practice fewer samples
are sufficient for good recovery as seen from Fig, 2.7. On average, the computational
time required for the recovery of the curve using 50 points is about 1.5 second.

which is bounded above by (k1 + k2)(k1 + k2 + 2(J − 1)).

We note that the upper bound can be approximated as (k1 + k2)2 for small

values of J , which is the upper bound in Proposition 5. The above result is proved in

Appendix 2.8.3. Note that unlike the case considered in Section 2.4.1, an arbitrary

set of N samples cannot guarantee the perfect recovery. Each of the J irreducible

curves C[ηj] need to be sampled proportional to their complexity, specified by deg(ηj)

to guarantee perfect recovery.

We demonstrate the above proposition in Fig. 2.5. We consider a curve

C[ψ], where cψ
F↔ ψ is support limited to a 5 × 5 region. We note that there are
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(a) 25 + 25 (b) 49 + 1 (c) 5 + 45

Figure 2.6. Illustration of Proposition 6: We consider the same curve C[ψ] as specified
by Fig 2.5 (b), which is given by the union of two irreducible curves with bandwidth
3× 3. So the bandwidth of C[ψ] is 5× 5. According to Proposition 6, we will need to
have around 100 samples to recover C[ψ] and each of the two irreducible curves need to
satisfy with the sampling condition. As we noted in Fig 2.5, our results are worst-case
guarantees. We observe that when we have 50 points and those points are uniformly
sampled on the two irreducible curves, we can successfully recover the whole curve,
as shown in (a). Now, if we put most of the samples on one of the irreducible curves,
we cannot fully recover the curve, as illustrated in (b) and (c). This implies that the
sampling condition on each of the irreducible factors is necessary in Proposition 6.

three connected components in the above curve. We consider the recovery from

different number of samples of C[ψ] in the middle row, sampled randomly. The

random strategy ensures that the samples are distributed to the factors, roughly

satisfying the conditions in Proposition 6. Note that the theory guarantees recovery,

when the number of samples exceeds around (k1 + k2)2 = 100 samples. We observe

good recovery of the curve around 50 samples; note that our results are worst-case

guarantees, and in practice fewer samples are sufficient for good recovery of most

curves. We further study the distribution of the points in Fig. 2.6. The experiments

demonstrate that each of the curves need to be sampled with a number proportional to

the bandwidth of the curves as in (b). When the points are non-uniformly distributed

as in (c) or (d), the recovery fails.

We further studied the above proposition in Fig. 2.7. We considered several
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random curves, each with different bandwidth and considered their recovery from

different number of samples. The sampling locations were picked at random. The

colors indicate the average reconstruction error between the actual curve and the

reconstructed curves. This reconstruction error is computed as the sum of distances

between each point on one curve and the closest point to it on the other curve. We

have also plotted the upper bound (k1 + k2)2 in red, while the number of unknowns

in the curve representation k1 k2 is plotted in blue. We note that the curve can be

recovered accurately when the number of samples exceed the upper bound. We also

note that in general, good recovery can be obtained for most curves, when the number

Figure 2.7. Effect of number of sampled points on perfect reconstruction. We ran-
domly generated several curves with different bandwidth and number of sampled
points, and recovered the curves from these samples. The success of reconstruction of
the curves averaged over several trials are shown in the above phase transition plot,
as a function of bandwidth and number of sampled entries. The color indicates the
frequency of success; the color black indicates that the true curve cannot be recov-
ered in any of the experiments, while the color white represents that the true curve
is recovered in all the experiments. It is seen that perfect recovery occurs whenever
we have ≥ (k1 + k2)2 samples, as indicated by our worst-case guarantees. However,
we note that good recovery is observed whenever the number of samples exceed the
degrees of freedom k1 · k2

.
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of samples exceed k1 k2.

2.4.5 Curve recovery with unknown Fourier support

Propositions 5 and 6 assume that the true support of the Fourier coefficients of

ψ, specified by Λ is known, in addition to the points {xi}Ni=1. However, typically only

the points will be known and the filter support will be unknown. We now consider the

case where the filter support is over-estimated as Γ ⊃ Λ. We focus on the recovery

of the coefficients from the annihilation relation

cTΦΓ = 0. (2.28)

The following result shows that the above matrix will have multiple linearly indepen-

dent null-space vectors. However, if the curves are sampled as described below, the

corresponding band-limited functions satisfy some desirable properties that facilitate

the recovery of the curves.

Proposition 7. Consider the zero level set of the band-limited polynomial ψ(x) with

J irreducible components, as described in Proposition 6. Let the assumed bandwidth

of the curve be Γ with |Γ| = l1 × l2 and Λ ⊂ Γ. Then, there exist multiple functions

that satisfy µ(xi) = 0; i = 1, · · · , N . If the irreducible curves of the zero level set of

ψ are sampled with

Nj > (l1 + l2)(k1,j + k2,j); j = 1, . . . , J, (2.29)

all of the above functions, or equivalently the right nullspace vectors cµ
F↔ µ of ΦΓ,

will be of the form:

µ(x) = ψ(x) η(x) (2.30)
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(a) 1st
nullspace
func.

(b) 2nd
nullspace
func.

(c) 3rd
nullspace
func.

(d) SOS
polynomial

(e) 1st
nullspace
func.

(f) 2nd
nullspace
func.

(g) 3rd
nullspace
func.

(h) SOS
polynomial

Figure 2.8. Illustration of Propositions 7 & 8: We consider the recovery of the curve
C[ψ] as specified by Fig 2.5 (b), assuming unknown bandwidth. We over-estimate

the support Γ as 11x11, while the original support of cψ
F↔ ψ is 5 × 5. According

to Propositions 7& 8, when the number of samples exceed (k1 + k2)(l1 + l2) = 220,
the matrix is low-rank. The first row shows the results by using 220 samples. We
display the Fourier transforms of the three null-space functions of ΦΓ in (a), (b) and
(c). This approach of visualizing the null-space functions is similar to the approaches
in [47,91]. All of these functions are zero on the C[ψ], in addition to possessing several
other zeros. The sum of squares function, denoted by (2.5.2) is shown on the right
column, captures the common zeros, which specifies the curve C[ψ]. We use the SOS
function as a surrogate for the greatest common divisor of the null-space functions.
Note that the bound in Proposition 7 is also a worst-case guarantee. In the second
row, the curve C[ψ] was sampled on 100 random sampling locations, denoted by the
red crosses. We see that the curve can be recovered well using just 100 samples. The
computational time used to specify the curve using SOS function in this experiment
is about 1.6 second

.

where η(x) is an arbitrary function such that supp(cµ) = Γ.

Note that the minimal function ψ(x) is a special case of (2.30), with η = 1.

The above result is proved in Appendix 2.8.4. Since ψ(x) is the common factor of

all the annihilating functions, all of them will satisfy µ(x) = 0, for any point on the
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original curve as well as the sampling locations. This also implies that ψ(x) is a

common divisor of the above functions µ(x). In fact, ψ(x) is the greatest common

divisor as we will show it in the next paragraph. We now characterize the number of

linearly independent annihilation functions, or equivalently the size of the right null

space of ΦΓ.

Proposition 8. We consider the trigonometric polynomial ψ(x) described in Propo-

sition 7 and Λ ⊂ Γ. Then:

rank (ΦΓ(X)) ≤ |Γ| − |Γ : Λ|︸ ︷︷ ︸
r

(2.31)

with equality if the sampling conditions of Proposition 7 are satisfied.

Here,

Γ : Λ = {l ∈ Γ : l− k ∈ Γ, ∀ k ∈ Λ}. (2.32)

This set is illustrated in Fig 5(a) from [85] along with Γ and Λ. The inequality of this

result is same as the inequality of Proposition 5.1 in [85]. Based on the inequality,

we can then obtain the second part (the equality) of the result, which provides us a

means to compute the original curve, even when the original bandwidth/support Λ is

unknown. Specifically, Proposition 8 shows that ΦΓ(X) has |Γ : Λ| null-space vectors,

each of which satisfies (2.30). Besides, from the proof of Proposition 8, we can see

that any polynomial of the form

θl = exp(j2πlTx) ψ(x), ∀l ∈ Γ : Λ (2.33)

is a null-space vector of ΦΓ(X). Note that the exponentials exp(j2πlTx),∀l ∈ Γ : Λ

are linearly independent, and hence the set {θl; l ∈ Γ : Λ} spans the null space of
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ΦΓ(X). Since exp(j2πlTx) does not vanish in the domain, the only common zeros of

{θl; l ∈ Γ : Λ} will be the zeros of the minimal polynomial ψ(x), meaning that ψ(x)

is the greatest common divisor of the functions that span the null-space of ΦΓ(X).

Therefore, the common zeros of these functions, or equivalently the zeros of the

greatest common divisor, will specify the curve. A cheaper alternative to evaluating

the greatest common divisor is to evaluate the sum of squares polynomial, specified

by:

γ(x) =

Q∑
i=1

‖µi(x)‖2 (2.34)

which will vanish only on points satisfying ψ(x) = 0. Here Q = |Γ|−r is the dimension

of the right null-space of ΦΓ. Since cψ
F↔ ψ is a valid right null-space vector of ΦΓ

that only vanishes on the true curve, the sum of squares function γ specified in (2.5.2)

will only vanish on the true curve. Thus, if the total number of points sampled are

N =
∑J

j=1Nj > (l1 + l2)(k1 + k2 + 2(J − 1)), and are arranged as (2.29), then the

curve can be uniquely recovered.

We demonstrate the above result in Fig. 2.8. We considered the sampling of

the same curve illustrated in Fig. 2.5, with the exception that we over-estimated the

support to be 11 × 11 as opposed to the true support of 5 × 5. We considered 220

random samples, which satisfies the sampling conditions in Proposition 7. We show

three of the annihilating functions in the first three columns of Fig. 2.8. We note that

all of these functions are valid annihilating functions, but possess additional zeros.

By contrast, the sum of square polynomial shown on the right uniquely specifies the

curve.
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2.4.6 Recovery of arbitrary curves

Now, we compare our planar curves recovery results with an algorithm that

relies on level set evolution. Specifically, we re-engineer the level-set based method for

curve recovery termed as “distance regularized level set evolution” (DRLSE), which

was introduced in [64] for image segmentation. DRLSE poses the image segmentation

as the minimization of the cost function

E(φ)︸︷︷︸
energy function

= λ Lg(φ)︸ ︷︷ ︸
length

+αAg(φ)︸ ︷︷ ︸
area

+µ R(φ)︸ ︷︷ ︸
regularization

,

where φ is the level set function. Here, Rp(φ) is a level-set regularization term which

maintains the level-set function φ as a signed distance function. We choose the

function to be (16) of [64]. The first and second terms are the weighted length and

area of the curve, respectively:

Lg(φ) =

∫
Ω

gδ(φ)|∆φ|dx (2.35)

Lg(φ) =

∫
Ω

gH(−φ)dx (2.36)

which are determined by the choice of edge indicator function g. Length and area

minimizing flows are well-studied in the level-set literature, and correspond to curve

velocities that are proportional to curvature and constant velocity along the curve

normals [121]. The parameter µ for level set regularization term is determined by

the time step. Once the time step is chosen, µ is almost determined because of

the Courant-Friedrichs-Lewy (CFL) condition. We will re-engineer DRLSE to the

curve recovery from samples by choosing the edge indicator function as the distance

of the level-set function to points. Since DRLSE was originally designed for image
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segmentation, we use the edge-based edge indicator function discussed in (2.37). We

call the re-engineered DRLSE algorithm the level-set based algorithm.

In this subsection, we compare the proposed curve recovery scheme in Section

2.5 with the level-set based algorithm. We choose the edge indicator function as the

distance of the curve from the samples xi; i = 1, .., N :

g =
1

c
d(x,xi) (2.37)

where d(x,xi) = mini=1,··· ,N{c, ‖x − xi‖2} for all x in the image domain and c is a

large constant. We compare the two methods in the context of recovering the edge

curve for the Chinese character “Tian” (meaning sky in English) in Fig. 2.9.

In our method, we chose the bandwidth of the curve as 51× 51. For the level-

set based algorithm, we choose the parameters as λ = 5, α = 10 and the initialization

curve as a square which includes the whole curve. Note that our method do not

need any initialization. The two rows show the recovery results by the two different

methods from 600 and 1000 samples respectively. The first column shows the samples

we choose. The results obtained by using the level-set based algorithm are given in

the second column. The numbers of iterations for obtaining (b) and (e) are 1510

and 2260. The third column shows the recovery results by using our method. By

comparing (b) and (c), one can see that our method recover the curve successfully

from 600 randomly chosen samples. For the level-set based algorithm, the curve is

not successfully recovered from those 600 samples. Once we have 1000 samples, we

can find that both the two methods succeed in recovering the curve, as shown in (e)

and (f). However, the computational time required for our proposed algorithm is less
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than that of the level-set based algorithm. This example also demonstrates that both

the two level-set based methods work well even though the curves have some sharp

corners.

(a) 600 sam-
ples

(b) level-set
based: 600

(c) Proposed:
600

(d) 1000 sam-
ples

(e) level-set
based:1000

(f) Proposed:
1000

Figure 2.9. Comparison of the proposed curve recovery scheme in Section 2.4.2 with
the adaptation of [64] described in Section 2.4.6. The shape is randomly sampled
on the points shown in the first column. The second column consists of the curves
recovered using the level-set based algorithm, while the last column shows the ones by
the proposed scheme. The computational time required for the level-set based algo-
rithm is about 66 seconds whereas the computational time required for the proposed
algorithm is only about 6.4 seconds using 1000 samples.

2.4.7 Application of curve recovery in segmentation

The Mumford Shah functional is a popular formulation for segmenting objects

into piecewise constant regions. It approximates an image f by a piecewise constant

function

f =
K∑
k=1

ak χΩk
, (2.38)
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in the `2 sense, where Ωk, k = 1, .., K are the regions and ak are the constants and

χ represents the characteristic function on the set. The bounded curve is denoted

by ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ · · · ∪ ∂ΩK . Different penalties, including the length of ∂Ω or

its smoothness are imposed to regularize the optimization problem. We propose to

represent ∂Ω as the zero level set of a band-limited function ψ as in [85]. In this case,

the piecewise constant function satisfies ∇̂f ∗ c̃ = 0, which can be expressed in the

matrix form as

T
(
∇̂f
)

c = 0, (2.39)

where T is a block Toeplitz 2-D convolution matrix and c̃ is the matrix version

of vector c. When the bandwidth is over-estimated, T
(
∇̂f
)

has multiple linearly

independent null-space vectors and hence the matrix is low-rank. Note that the rank

of the matrix can be considered as a surrogate for the complexity of the curve ∂Ω.

We hence formulate the segmentation task as the low-rank optimization problem,

analogous to [47].

f ∗ = arg min
f
‖f − h‖2 + λ

N∑
i=r+1

∥∥∥σi [T (∇̂f)]∥∥∥2

(2.40)

where h is the original image. Note that as λ → ∞, T
(
∇̂f
)

approaches a rank r

matrix. Once f ∗ is obtained, the sum of square function of the null space of T
(
∇̂f
)

will specify the curve and f ∗ is the piecewise constant approximation. We use an

alternating minimization strategy as reported in [47] to solve the above optimization

scheme.

We demonstrate the preliminary utility of the segmentation scheme in Fig.
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(a) DRLSE #1 (b) DRLSE #2 (c) Proposed

(d) DRLSE #1 (e) DRLSE #2 (f) Proposed

Figure 2.10. Illustration of edge based segmentation using the band-limited curve
model using (2.40) and the comparisons with the segmentation method DRLSE in-
troduced in [64]. The DLRSE scheme requires curve initialization, indicated by the
green squares in the DLRSE results. The red curves in each case show the final
curves. The parameters of the algorithms are optimized manually to yield the best
results. The results show that the proposed scheme can provide similar segmenta-
tion as DLRSE, while it does not need initialization and is guaranteed to converge
to global minimum. The ranks we choose here are 500 and 1200 for cells image and
church image respectively.

(a) rank = 200 (b) rank = 350 (c) rank = 600

(d) rank = 850 (e) rank = 1000 (f) rank = 1350

Figure 2.11. Illustration of sensitivity of our proposed image segmentation algorithm
to the rank. From the segmentation results, we see that when the rank is small,
simpler segmentation curves will be obtained. When the rank is chosen to be too
high, we will obtain over-segmentation result. Thus, the rank is a good surrogate for
the complexity of the curve.
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2.11 on two images: the cells image and the church image. The proposed algorithm

in (2.40) is initialized with f = h and iterated until convergence. The parameter λ is

set to a high value (e.g. 5 × 109 in our experiments) to enforce the rank constraint.

We note that the optimization scheme is capable of identifying the cells and the

outline of the church, even though no curve initialization was provided. For the cells

segmentation (c) and the church segmentation (f), we choose the rank to be 500 and

1200 respectively. The corresponding computational time for the two segmentations

is 60 seconds and 226 seconds. We now compare our segmentation method with the

level-set based segmentation method DLRSE [64], where the edge indicator function

is chosen as

g =
1

1 + |∇Gσ ∗ I|2
, (2.41)

where Gσ is a Gaussian kernel with a standard deviation σ. We considered the

initialization of DLRSE with two possible curves, indicated by the green squares.

The parameters in DLRSE were chosen manually to yield the best results, which

corresponded to λ = 6, α = ±2, 1510 iterations for the cells image. The parameters

for the church image were λ = 4.8, α = −2, 2710 iterations. For the cells image

segmentation, the time required for getting (a) and (b) is 47 seconds and 40 seconds.

For chruch image segmentation, the computational time for getting (d) and (e) is 175

seconds and 249 seconds. These results show that the proposed scheme is comparable

to DLRSE in segmentation performance and can capture sharp features. However,

the main benefit is its insensitivity to initialization, compared to DLRSE seen from

(d) and (e).
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2.5 High probability guarantees for surface recovery from samples

In this section, we will use the low-rank structure of the feature maps of the

points to recover the surface. As discussed in the introduction, the recovery of a

surface/manifold from point clouds is an important problem in denoising, machine

learning, shape recovery from point clouds, and image segmentation. For presenta-

tion purposes, we consider different cases in the increasing order of complexity. In

particular, we consider irreducible (single connected component) surfaces with mini-

mal lifting, union of irreducible components with minimal lifting, and finally the case

with non-minimal lifting. Note that in practice, the bandwidth of the surface is not

known apriori, and hence one has to over-estimate the bandwidth; this translates

to the non-minimal lifting setting. Our results in this section show that irreducible

surfaces can be recovered from very few samples, as long as the number of samples

exceed a number proportional to the bandwidth. Union of irreducible surfaces can

also be recovered from few samples, but each of the irreducible components need to

be sampled adequately to guarantee perfect recovery.

2.5.1 Sampling theorems

We consider the recovery of the surface S from its samples xi; i = 1, · · · , N .

According to the analysis in the previous section, if the sampling point xi is located

on the zero level set of ψ(x), we will then have the annihilation relation specified by

(2.20). Notice that equation (2.20) is a linear equation with c as its unknowns. Since
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all the samples xi; i = 1, .., N satisfy the annihilation relation (2.20), we have

cT [ΦΓ(x1) · · · ΦΓ(xN)]︸ ︷︷ ︸
ΦΓ(X)

= 0. (2.42)

We call ΦΓ(X) the feature matrix of the sampling set X = {x1, · · · ,xN}. We propose

to estimate the coefficients c, and hence the surface S[ψ] using the above linear

relation (2.42). Note that S[ψ] is invariant to the scale of c; without loss of generality,

we reformulate the estimation of the surface as the solution to the system of equations

cT ΦΓ(X) = 0; ‖c‖F = 1. (2.43)

We note that without the constraint ‖c‖F = 1, cT ΦΓ(X) = 0 will have a trivial

solution with c = 0. The use of the Frobenius norm constraint enables us to solve

the problem using eigen decomposition. The above estimation scheme yields a unique

solution, if the matrix ΦΛ(X) has a unique null-space basis vector. We will now focus

on the number of samples N and its distribution on S[ψ], which will guarantee the

unique recovery of S[ψ]. We will consider different lifting scenarios introduced in

Section 2.3 separately. As we will see, in some cases considered below, the null-space

has a large dimension. However, the minimal null-space vector (coefficients with the

minimal bandwidth) will still uniquely identify the surface, provided the sampling

conditions are satisfied.

2.5.1.1 Case 1: Irreducible surfaces with minimal lifting

Suppose ψ(x) is an irreducible trigonometric polynomial with bandwidth Λ.

Consider the lifting which is specified by the minimal bandwidth Λ. We see from
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(2.16) that rank (ΦΛ(X)) ≤ |Λ| − 1. The following result shows when the inequality

is replaced by an equality.

Proposition 9. Let {x1, · · · ,xN} be N independent and uniformly distributed ran-

dom samples on the surface S[ψ], where ψ(x) is an irreducible (minimal) trigonomet-

ric polynomial with bandwidth Λ. The feature matrix ΦΛ(X) will have rank |Λ| − 1,

if

N ≥ |Λ| − 1

for almost all surfaces S[ψ].

We note that the above results are true for almost all surfaces. This implies

that the surfaces for which the above results do not hold correspond to a set of

measure zero [38]. The above proposition guarantees that the solution to the system

of equations specified by (2.43) is unique (up to scaling) when the number of samples

exceeds N = |Λ|−1 with unit probability. The proof of this proposition can be found

in Appendix 2.8.7. With Proposition 9, we obtain the following sampling theorem.

Theorem 10 (Irreducible surfaces of any dimension). Let ψ(x),x ∈ [0, 1]n, n ≥ 2

be an irreducible trigonometric polynomial whose bandwidth is given by Λ. The zero

level set of ψ(x) is denoted as S[ψ]. If we are randomly given N ≥ |Λ| − 1 samples

on S[ψ], then almost all surfaces S[ψ] can be recovered.

This theorem generalizes the results in [155] to any dimension n ≥ 2 and is

illustrated in Fig. 2.12 and Fig. 2.13.
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(a) Curve (b) Recovery #1 (c) Recovery #2

(d) original
ψ(x, y)

(e) ψ(x, y) with 7
samples

(f) ψ(x, y) with 8
samples

Figure 2.12. Illustration of Theorem 10 in 2D. The irreducible curve given by (a) is the
original curve, which is obtained by the zero level set of a trigonometric polynomial
whose bandwidth is 3× 3. According to Theorem 10, we will need at least 8 samples
to recover the curve. In (b), we randomly choose 7 samples (the red dots) on the
original curve (the gray curve). The blue dashed curve shows the recovered curve
from this 7 samples. Since the sampling condition is not satisfied, the recovery failed.
In (c), we randomly choose 8 points (the red dots). From (c), we see that the blue
dashed curve (recovered curve) overlaps the gray curve (the original curve), meaning
that we recover the curve perfectly. In (d) - (f), we showed the original trigonometric
polynomial, the polynomial obtained from 7 samples and the polynomial obtained
from 8 samples.

In the theorem, when n = 2, then S is a planar curve. In this setting, if

the bandwidth of ψ Λ is a rectangular region with dimension k1 × k2. Then by this

sampling theorem, we get perfect recovery with probability one, when the number of

random samples on the curve exceeds k1 · k2 − 1. Note that the degrees of freedom

in the representation (2.3) is k1 · k2 − 1, when we constrain ‖c‖F = 1. This implies

that if the number of samples exceed the degrees of freedom, we get perfect recovery.
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(a) Surface (b) Recovery #1 (c) Recovery #2

Figure 2.13. Illustration of Theorem 10 in 3D. The irreducible surface given by (a) is
the original surface, which is given by the zero level set of a trigonometric polynomial
whose bandwidth is 3 × 3 × 3. According to Theorem 10, we will need at least 26
samples to recover the surface. In (b), we randomly choose 25 samples (the blue dots)
on the original surface (the gray part). The red surface is what we recovered from the
25 samples. Since the sampling condition is not satisfied, the recovery failed. In (c),
we randomly choose 26 points (the blue dots). From (c), we see that the red surface
(recovered surface) overlaps the gray surface (the original surface), meaning that we
recover the surface perfectly.

Note that these results are significantly less conservative than the ones in [155], which

required a minimum of (k1 + k2)2 samples. We note that the results in [155] were

the worst case guarantees, and will guarantee the recovery of the curve from any

(k1 + k2)2 samples. By contrasts, our current results are high probability results;

there may exist a set of N ≥ k1 · k2 − 1 samples from which we cannot get unique

recovery.

We note that the current work is motivated by the phase transition experiments

(Fig. 5) in [155], which shows that one can recover the curve in most cases when the

number of samples exceeds k1 ·k2−1 rather than the conservative bound of (k1 +k2)2.

We also note that it is not straightforward to extend the proof in [155] to the cases

beyond n = 2. Specifically, we relied on Bezout’s inequality in [155], which does not

generalize easily to high dimensional cases.
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2.5.1.2 Case 2: Union of irreducible surfaces with minimal lifting

We now consider the union of irreducible surfaces S[ψ], where ψ has several

irreducible factors ψ(x) = ψ1(x) · · ·ψM(x). Then we have S[ψ] =
⋃M
i=1 S[ψi]. Sup-

pose the bandwidth of ψ(x) is given by Λ and the bandwidth of each factor ψi(x) is

given by Λi. We have the following result for this setting.

Proposition 11. Let ψ(x) be a trigonometric polynomial with M irreducible factors,

i.e.,

ψ(x) = ψ1(x) · · ·ψM(x). (2.44)

Suppose the bandwidth of each factor ψi(x) is given by Λi and the bandwidth of ψ

is Λ. Assume that {x1, · · · ,xN} are N uniformly distributed random samples on

S[ψ], which are chosen independently. Then with probability 1 that the feature matrix

ΦΛ(X) will be of rank |Λ| − 1 for almost all ψ if

1. each irreducible factor is randomly sampled with Ni ≥ |Λi| − 1 points, and

2. the total number of samples satisfy N ≥ |Λ| − 1.

Similar to previous propositions, the above results are valid for almost all ψ,

which implies that the set of ψ for which the above results do not hold is a set of

measure zero [38]. The proof of this result can be seen in Appendix 2.8.7.3. Based

on this proposition, we have the following sampling conditions.

Theorem 12 (Union of irreducible surfaces of any dimension). Let ψ(x) be a trigono-

metric polynomial with M irreducible factors as in (2.45). If the samples x1, .,xN
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satisfy the conditions in Proposition 11, then the surface can be uniquely recovered by

the solution of (2.43) for almost all ψ.

Unlike the sampling conditions in Theorem 10 that does not impose any con-

straints on the sampling, the above result requires each component to be sampled

with a minimum rate specified by the degrees of freedom of that component. We

illustrate the above result in Fig. 2.14 in 2D (n = 2), where S is the union of two

irreducible curves with bandwidth of 3× 3, respectively. The above results show that

if each of these simply connected curves are sampled with at least eight points and if

the total number of samples is no less than 24, we can uniquely identify the union of

curves. The results show that if any of the above conditions are violated, the recovery

fails; by contrast, when the number of randomly chosen points satisfy the conditions,

we obtain perfect recovery.

2.5.1.3 Case 3: Non-minimal lifting

In Section 2.5.1.1 and 2.5.1.2, we introduced theoretical guarantees for the

perfect recovery of the surface in any dimensions. The sampling theorems introduced

in Section 2.5.1.1 and 2.5.1.2 assume that we know exactly the bandwidth of the

surface or the union of surfaces. However, in practice, the true bandwidth of the

surface is usually unknown. We now consider the recovery of the surface, when the

bandwidth is over-estimated, or equivalently the lifting is performed assuming Γ ⊃ Λ.

As discussed in Proposition 8, the dimension of VΓ is upper bounded by |Γ|− |Γ	Λ|,

which implies that

rank(ΦΓ(X)) ≤ |Γ| − |Γ	 Λ|,
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(a) Curve (b) 7 + 17 (c) 8 + 16

(d) 17 + 7 (e) 16 + 8 (f) 8 + 8

Figure 2.14. Illustration of Theorem 12. The original curve (a) is given by the zero set
of a reducible trigonometric polynomial with bandwidth 5× 5, which is the product
of two trigonometric polynomials with bandwidth 3 × 3. According to the sampling
theorem, we totally need at least 24 samples and each of the components needs to
be sampled for at least 8 samples. We first choose 7 samples (red dots) on the first
component and 17 samples (red circles) on the second one. The gray curve in (b) is
the original curve and the blue dashed curve is what we recovered from the 7+17 = 24
samples. Since the sampling condition is not satisfied, the recovery failed. In (c), we
choose 8 samples (red dots) on the first component and 16 samples (red circles) on the
second one. From (c), we see that the gray curve (the original curve) overlaps the blue
dashed curve (recovered curve), meaning that we recovered the curve successfully. In
(d), we choose 17 samples on the first component and 7 samples on the other one.
From (d), we see that the recovery is not successful. In (e), we have 16 samples on
the first component and 8 samples on the second one. The original curve overlaps
the recovered one. So we recovered it perfectly. Lastly, we choose 8 samples on each
of the component and we failed to recover the curve as shown in (f). Note that the
recovered curves pass through the samples in all cases.

where Γ	Λ represents the number of valid shifts of Λ within Γ as discussed in Section

2.3.1.2.

The following two propositions show when the inequality in the rank relation

above can be an equality and hence we can recover the surface.
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Proposition 13 (Irreducible surface with non-minimal lifting). Let {x1, · · · ,xN}

be N random samples on the surface S[ψ], chosen independently. The trigonometric

polynomial ψ(x) is irreducible whose true bandwidth is Λ. Suppose the lifting mapping

is performed using bandwidth Γ ⊃ Λ. Then rank(ΦΓ(X)) = |Γ| − |Γ 	 Λ| for almost

all ψ, if

N ≥ |Γ| − |Γ	 Λ|.

The proof of this proposition can be found in Appendix 2.8.7.4.

Proposition 14 (Union of irreducible surfaces with non-minimal lifting). Let ψ(x)

be a randomly chosen trigonometric polynomial with M irreducible factors, i.e.,

ψ(x) = ψ1(x) · · ·ψM(x). (2.45)

Suppose the bandwidth of each factor ψi(x) is given by Λi and the bandwidth of ψ is

Λ. Let Γi ⊃ Λi be the non-minimal bandwidth of each factor ψi(x) and Γ ⊃ Λ is

the bandwidth of the non-minimal lifting. Assume that {x1, · · · ,xN} are N random

samples on S[ψ] that are chosen independently. Then, the feature matrix ΦΛ(X) will

be of rank |Γ| − |Γ	 Λ| for almost all ψ if

1. each irreducible factor is randomly sampled with Ni ≥ |Γi| − |Γi 	 Λi| points,

and

2. the total number of samples satisfy N ≥ |Γ| − |Γ	 Λ|.

We prove this result in Appendix 2.8.7.5. Note that in practice, when non-

minimal lifting mapping is performed, we then randomly sample approximately |Γ|−
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|Γ	Λ| positions on S. This random strategy ensures that the samples are distributed

to the factors, roughly satisfying the conditions in Proposition 14. We further stud-

ied this proposition in Fig. 2.15. We considered several random surfaces obtained

by choosing random coefficients, each with different bandwidth and considered their

recovery from different number of samples. From which, we obtained the phase tran-

sition plot given in Fig. 2.15, which agrees well with the theory.

Figure 2.15. Effect of number of sampled points on surfaces reconstruction error. We
randomly generated several surfaces with different bandwidths and number of sampled
points, and tried to recover the surfaces from these samples. The reconstruction errors
of the surfaces averaged over several trials are shown in the above phase transition
plot, as a function of bandwidth and number of sampled entries. the color black
indicates that the true surfaces can be recovered in any of the experiments, while the
color white represents that the true surfaces are not recovered in all the experiments.
It is seen that we can almost recover the surfaces with |Λ| = k1 · k2 · k3 samples.

2.5.2 Surface recovery algorithm for the non-minimal setting

The two propositions in Section 2.5.1.3 show that ΦΓ(X) has |Γ	Λ| null space

basis vectors ni ↔ µi, when the non-minimal lifting with bandwidth Γ is performed.

The following result from [155] shows that the null-space vectors are related to the
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minimal polynomial of the surface. In particular, all null-space vectors have the

minimal polynomial as a factor. We will use this property to extract the surface from

the null-space vectors as their greatest common divisor. We also introduce a simpler

computational strategy which relies on the sum of squares of the null-space vectors.

Proposition 15 (Proposition 9 in [155]). The coefficients of the trigonometric poly-

nomials of the form

θk(x) = exp(j2πlTx)ψ(x), ∀k ∈ Γ	 Λ.

is a null space vector of ΦΓ(X).

Note that the coefficients of θk(x) correspond to the shifted versions of the

coefficients of ψ and hence are linearly independent. We also note that any such

function is a valid annihilating functions for points on S. When the dimension of the

null-space is |Γ	 Λ|, these corresponding coefficients form a basis for the null-space.

Therefore, we have that any function in the null-space can be expressed as

η(x) =
∑

k∈Γ	Λ

αk ψ(x) exp(j2πkTx) (2.46)

= ψ(x)
∑

k∈Γ	Λ

αk exp(j2πkTx)︸ ︷︷ ︸
γ(x)

= ψ(x)γ(x), (2.47)

where αk and γ are arbitrary coefficients and function, respectively. Note that all of

the functions obtained by the null-space vectors have ψ as a common factor.

Accordingly, we have that ψ(x) is the greatest common divisor of the poly-

nomials µi(x) ↔ ni, where ni are the null-space vectors of ΦΓ(X), which can be

estimated using singular value decomposition (SVD). Since we consider polynomials
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of several variables, it is not computationally efficient to find the greatest common

divisor. We note that we are not interested in recovering the minimal polynomial,

but are only interested in finding the common zeros of µi(x). We hence propose to

recover the original surface as the zeros of the sum of squares (SoS) polynomial

σ(x) =

|Γ	Λ|∑
i=1

|µi(x)|2.

Note that rank guarantees in Propositions 2.8.7.4 and 2.8.7.5 ensure that the

entire null-space will be fully identified by the feature matrix. Coupled with Proposi-

tion 15, we can conclude that the recovery using the above algorithm (SVD, followed

by the sum of squares of the inverse Fourier transforms of the coefficients) will give

perfect recovery of the surface under noiseless conditions. The algorithm is illustrated

in Fig. 2.16.

2.6 Surface recovery from noisy samples

The analysis in Section 2.5.1.3 shows that when the bandwidth of the surface

is small, the feature matrix is low rank. In practice, the sampling points are usually

corrupted with some noise. We denote the noisy sampling set by Y = X + N, where

N is the noise. We propose to exploit the low-rank nature of the feature matrix

to recover it from noisy measurements. Specifically, when the sampling set X is

corrupted by noise, the points will deviate from the original surface, and hence the

features will cease to be low rank. We impose a nuclear norm penalty on the feature

maps that will push the feature vectors to a subspace. Since the feature vectors are

related to the original points by the exponential mapping, the original points will

move to the surface. In practice it is difficult to compute the feature map. We hence
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(a) The original
curve

(b) The sampling
points

(c) 1st null-space
function

(d) 2nd null-space
function

(e) sum-of-squares
polynomial

Figure 2.16. Illustration of the sampling fashion for non-minimal bandwidth. We con-
sider the curve as shown in (a), which is given by the zero level set of a trigonometric
polynomial of bandwidth 5× 5. We choose the non-minimal bandwidth Γ as 11× 11.
According to the sampling condition for non-minimal bandwidth, we sampled on 72
random locations. We randomly chose two null-space vectors for the feature matrix
of the sampling set, which gave us functions (c) and (d). We can see that all of these
functions have zeros on the original zero set, in addition to processing several other
zeros. The sum of squares function is shown in (e), showing the common zeros, which
specifies the original curve.

rely on an iterative reweighted least-squares algorithm, coupled with the kernel-trick,

to avoid the computation of the features. Since the cost function is non-linear (due

to the non-linear kernel), we use steepest descent-like algorithm to minimize the

cost function. We note that each iteration of this algorithm has similarities to non-

local means algorithms, which first estimate the weight/Laplacian matrix from the

patches, followed by a smoothing. We also note that this approach has conceptual

similarities to kernel low-rank algorithms used in MRI and computer vision [79, 81].
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These algorithms rely on explicit polynomial mappings, low-rank approximation of

the features, followed by the analytical evaluation of the pre-images that is possible

for polynomial kernels.

We pose the denoising as:

X∗ = arg min
X
||X−Y||2 + λ||Φ(X)||∗ (2.48)

where we use the nuclear norm of the feature matrix of the sampling set as a reg-

ularizer. Unlike traditional convex nuclear norm formulations, the above scheme is

non-convex.

We adapt the kernel low-rank algorithm in [89, 99] to the high dimensional

setting to solve (2.48). This algorithm relies on an iteratively reweighted least squares

(IRLS) approach [42,75] which alternates between the following two steps:

X(n) = arg min
X
||X−Y||2 + λtrace[K(X)P(n−1)], (2.49)

and

P(n) =
[
K(X(n)) + γ(n)I

]−1/2
(2.50)

where γ(n) = γ(n−1)

η
and η > 1 is a constant. Here, K(X) = ΦΓ(X)TΦΓ(X). We use

the kernel-trick to evaluate K (X). The kernel-trick suggests that we do not need

to explicitly evaluate the features. Each entry of the matrices K (X) correspond to

inner-products in feature space:

(K (X))(i,j) = Φ(xi)
HΦ(xj)︸ ︷︷ ︸

κ(xi,xj)

(2.51)

which can be evaluated efficiently using the nonlinear function κ (termed as kernel

function) of their inner-products in Rn.
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The dependence of the kernel function on the lifting is detailed in Section

3.2.3. Since the above problem in (2.49) is not quadratic, we propose to solve it using

gradient descent as in [155]. We note that the cost function in (2.49) can be rewritten

as

C(X) = ‖X−Y‖2 + λ
∑
i,j

P
(n−1)
ij κ (xi,xj) , (2.52)

where Pi,j are the entries of the matrix P(n−1). As will be discussed in detail in

Section 3.2.3, the exponential kernel for a circular support as in Fig. 3.2.(b) can be

approximated as a circularly symmetric kernel κ(xi,xj) = k(‖xi−xj‖2). In this case,

the partial derivatives of (2.49) with respect to one of the vectors xi is

∂xi
C = 2(xi − yi) + 2λ

∑
j

P
(n−1)
ij k′(‖xi − xj‖2)︸ ︷︷ ︸

wi,j

(xi − xj) (2.53)

= 2(xi − yi) + 2λ

(∑
j

wi,j

)
︸ ︷︷ ︸

di

xi −WX. (2.54)

Here,

Wij = P
(n−1)
ij k′(‖xi − xj‖2. (2.55)

Thus, the gradient of the cost function (2.52) is :

∇XC ≈ 2(X−Y) + 2λ (D−W)︸ ︷︷ ︸
L

X. (2.56)

Here, L = D −W is the matrix obtained from the weights W and D is a diagonal

matrix with diagonal entries di =
∑

j Wij.

We note that the gradient of (2.49) specified by (2.56) is also the gradient of

the cost function

D = ‖X−Y‖2
F + λ trace

(
X L XH

)
, (2.57)
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which is used in approaches such as non-local means (NLM) [17] and graph regular-

ization [122]. We note that the above optimization problem is quadratic and hence

has an analytical solution. We thus alternate between the solution of (2.57) and up-

dating the weights, and hence the Laplacian matrix using (2.55), where P is specified

by (2.50). Despite the similarity to NLM, we note that NLM approaches use a fixed

Laplacian unlike the iterative approach in our work. In addition, the expression of

the Laplacian is also very different. We refer the readers to [155] for comparison of

the proposed scheme with the above graph regularized algorithm. Once the denoised

null-space matrix is obtained from the above algorithm, we can use the sum of square

approach described in Section 2.5.1.3 to recover the surfaces. We note that the al-

gorithm is not very sensitive to the true bandwidth of the kernel Γ, as long as it

over-estimates the true bandwidth of the surface Λ.

2.6.1 Point cloud denoising in 2D

We illustrate the utility of the kernel low-rank formulation (KLR) to denoise

2D points in Fig. 2.17. In Fig. 2.17, we also compared our method with another

point-set denoising method called “Graph Laplacian regularized point cloud denoising

(GLR)”, which was introduced recently in [148]. We choose 3 examples to perform

the point sets denoising algorithms and in each example, we add Gaussian noise to the

point sets. In the first example, we randomly choose 409 points on the edge set of a

rabbit as shown in (a). We use GLR and KLR to denoise the noisy points respectively.

For GLR, we set the parameter µ to be 1000 and after 34 iterations, we obtained the

denoising result (c). In KLR, we get the denoising result (d) after 80 iterations using
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about 4.4 seconds. In the second examples, we choose 385 points on the edge set of a

plane. We again set the parameter µ to be 1000 and after 31 iterations, we have the

denoising result (g). For KLR, we get the result (h) by iterating 80 times using about

4.0 seconds. In the third example, we choose 451 points on the shape of a fish. For

GLR, after 34 iterations by setting the parameter µ in the algorithm to be 1000, we

obtain the denosing result (k). For our proposed denoising algorithm, we raised the

number of iterations to 450 and it takes about 32.7 seconds to obtain the denoising

result (l). By comparing the denosing results (c) and (d), (g) and (h), (k) and (l),

we can see that both the two methods work for denosing the noisy points. While

for GLR, we can see that the some points will get closer along the right curve. To

compare the experimental performance mathematically, we introduce an evaluation

metric, signal-to-noise ratio (SNR), for point cloud denoising. Suppose the ground-

truth and predict point clouds are {xi}N1
i=1 and {yi}N2

i=1. We define the SNR, which is

measured in dB by

SNR = 10 log
1/N2

∑
yi
||yi||22

MSE
,

where MSE is the mean-square-error defined as

MSE =
1

2N1

∑
xi

min
yj

||xi − yj||22 +
1

2N2

∑
yi

min
xj

||yi − xj||22.

2.6.2 Point cloud denoising in 3D

We illustrate this approach in the context of recovering 3D shapes from noisy

point clouds in Fig. 2.18. The data sets are obtain from AIM@SHAPE [1]. We note

that the direct approach, where the null-space vector is calculated from the noisy
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(a) Original #1 (b) Noisy #1, SNR
= 31.85 dB

(c) GLR, SNR =
32.09 dB

(d) KLR, SNR =
35.21 dB

(e) Original #2 (f) Noisy #2, SNR
= 29.94 dB

(g) GLR, SNR =
30.01 dB

(h) KLR, SNR =
33.01 dB

(i) Original #3 (j) Noisy #3,
SNR= 28.33 dB

(k) GLR, SNR =
28.95 dB

(l) KLR, SNR =
31.84 dB

Figure 2.17. Comparison between proposed denoising algorithm (KLR) and Garph
Laplacian Regularized denoising algorithm (GLR) introduced in [148].

feature matrix, often results in perturbed shapes. By contrast, the nuclear norm

prior is able to regularize the recovery.

2.7 Discussion and Conclusion

We introduced a continuous domain framework for the recovery of points on

a band-limited surfaces. The proposed bandlimited representation have several de-

sirable geometric properties, which make it an attractive tool in a variety of shape

estimation problems. We have introduced novel algorithms with sampling guarantees

for the recovery of both irreducible and union of irreducible bandlimited surfaces from
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(a) 1500 sam-
ples

(b) 2500 sam-
ples

(c) 2500 sam-
ples

(d) Noisy
samp.

(e) Denoised
samp.

(f) Noisy re-
con.

(g) Denoised
recon.

(h) Original
recon.

(i) Noisy
samp.

(j) Denoised
samp.

(k) Noisy re-
con.

(l) Denoised
recon.

(m) Original
recon.

(n) Noisy
samp.

(o) Denoised
samp.

(p) Noisy re-
con.

(q) Denoised
recon.

(r) Original
recon.

Figure 2.18. Illustration of the points cloud denoising algorithm and surface recovery
algorithm with unknown bandwidth. The first row shows the samples drawn from
three surfaces. Noise is added to the samples (see (d), (i), (n)). Then we use the
proposed algorithm to denoise the points. The parameter λ in (2.48) is chosen as 1.4
for the denoising algorithm. The number of iterations for the denoising algorithm
is 30. The surfaces that are recovered from noisy samples and denoised samples are
also presented for comparison. The bandwidth was chosen as 31× 31× 31 for all the
experiments.

few of their samples.

We also demonstrated the utility of the representation in practical applications

including image segmentation and denoising of a point cloud, which can be modeled
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by a surface. The main benefit of the surface recovery from points as well as image

segmentation over the state of the art is the convex formulation, which makes the

algorithm insensitive to local minima errors as well as initialization. The segmentation

and point cloud denoising experiments show that the proposed scheme can exploit

the global structure of the points better than competing methods that rely on local

surface properties such as smoothness and curvature, which makes the algorithms less

sensitive to non-uniformity of sampling.

2.8 Appendix

2.8.1 Proof of Lemma 4

We first state the well-known result for complex polynomials, which we extend

to the band-limited setting.

Lemma 16. [116] Let p1 and p2 be two nonconstant polynomials in C[z1, z2] of

degrees d1 and d2 respectively. If p1 and p2 have no common component, then the

system of equations

p1 = p2 = 0 (2.58)

has at most d1d2 solutions.

Lemma 4 can be proved by simply substituting p1 = P [µ] and p2 = P [η]

in Lemma 16. Specifically, the degree of P [µ] and P [η] are (k1 + k2) and (l1 + l2)

respectively. Hence, the maximum number of solutions to (2.24) is given by (k1 +

k2)(l1 + l2).
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2.8.2 Proof of Proposition 5

Proof. The Fourier coefficients of ψ(x) is support limited within Λ, which is the

minimal support. Let η(x) be another band-limited polynomial, whose Fourier co-

efficients are support limited within Λ and satisfies η(xi) = 0, for i = 1, . . . , N .

When the number of samples satisfy (2.25), this is only possible if η is a factor of

ψ, according to Bézout’s inequality. Thus, ψ(x) must be a factor of η(x). Since ψ

is irreducible, this implies that it is the unique band-limited irreducible polynomial

satisfying ψ(xi) = 0.

2.8.3 Proof of Proposition 6

Proof. The polynomial ψ(x) is represented in terms of its irreducible factors as:

ψ(x) = ψ1(x)ψ2(x) . . . ψJ(x) (2.59)

where the bandwidth of ψj(x) is k1,j × k2,j.

Let η(x) be another polynomial with bandwidth k1 × k2 satisfying η(xi) = 0,

for i = 1, . . . , N . Consider one of the irreducible sub-curves {ψj(x) = 0}, that is

sampled on Nj points satisfying (2.26). According to Lemma 4, both ψj and η can

be simultaneously zero at these sampling locations only if ψj and η have a common

factor. Since ψj is irreducible, this implies that ψj is a factor of η. Repeating this

line of reasoning for all factors {ψj}, we conclude that ψ(x) divides η(x). Since both

ψ(x) and η(x) have the same bandwidth, the only possibility is that η(x) is a scalar

multiple of ψ(x). This implies that the curve ψ(x) = 0 can be uniquely recovered in

(2.26) is satisfied.

The total number of points to be sampled isN =
∑J

j=1 Nj > (k1+k2)
∑J

j=1(k1,j+
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k2,j).

The support of the Fourier coefficients of ψ can be expressed in terms of the

supports of {ψj}. Using convolution properties, we get: k1 = 1 +
∑J

j=1(k1,j − 1) and

k2 = 1 +
∑J

j=1(k2,j − 1). Thus,
∑J

j=1(k1,j + k2,j) = k1 + k2 + 2(J − 1) and it can be

concluded that N > (k1 + k2)(k1 + k2 + 2(J − 1)).

2.8.4 Proof of Proposition 7

Proof. Following the steps of the proof for Proposition 6, we can conclude that ψ(x)

is a factor of µ(x). Since Λ ⊂ Γ, it follows that µ(x) = ψ(x) η(x), where η(x) is some

arbitrary function such that µ(x) is band-limited to Γ.

2.8.5 Proof of Proposition 8

Proof. Let c be the minimal filter of bandwidth |Λ|, associated with the polynomial

ψ(x). We define the following filters supported in Γ for all l ∈ Γ : Λ.

cl[k] =

{
c[k− l], if k− l ∈ Λ.

0, otherwise.
(2.60)

cl are the Fourier coefficients of exp(j2πlTx)ψ(x), and are all null-space vectors of

the feature matrix ΦΓ(X). The number of such filters is |Γ : Λ|. Hence, we get the

rank bound: rank (ΦΓ(X)) ≤ |Γ| − |Γ : Λ|.

If the sampling conditions of Proposition 7 are satisfied, then all the polyno-

mials corresponding to null-space vectors of ΦΓ are of the form: µ(x) = ψ(x) η(x).

Alternatively, in the Fourier domain, the filters are of the form:

cµ[k] =
∑
l∈Γ:Λ

dlcl[k] (2.61)

where dl are the Fourier coefficients of the arbitrary polynomial η(x). Thus, all the
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null-space filters can be represented in terms of the basis set {cl}. This leads to the

relation: rank (ΦΓ(X)) = |Γ| − |Γ : Λ|.

2.8.6 Proof of Proposition 1

As we mentioned in Section 2.2.1.3, if we have a (hyper-)surface S which

is given by the zero level set of a trigonometric polynomial, then there will be a

minimal polynomial which defines S (Proposition 1). To prove this result, we need

the following famous result.

Lemma 17 (Hilbert’s Nullstellensatz [7]). Let K be an algebraically closed field (for

example C). Suppose I ⊂ K[x1, · · · , xn] is an ideal of polynomials, and Z(I) denotes

the set of common zeros of all the polynomials in I. Let I(Z(I)) represents the ideal

of polynomials in K[x1, · · · , xn] vanishing on Z(I). Then, we have

I(Z(I)) =
√
I,

where
√
I denotes the radical of I, specified by the set

√
I =: {p|pn ∈ I, for some n ∈ Z+} (2.62)

Remark 1. We say a set I ⊂ K[x1, · · · , xn] is an ideal, if I is closed under the

addition operation (e.g. addition“+”), satisfies the associative property, has a unit

element 0, and a valid inverse for every element in I. For the operation multiplication

(e.g. “·”), we have r · p ∈ I and p · r ∈ I for any r ∈ K[x1, · · · , xn]

Remark 2. An important property of the radical of the ideal I is that I ⊂
√
I. Note

that setting n = 1 in (2.62) will yield I.
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Remark 3. The above lemma states that the set of all polynomials that vanish on

the common zeros Z(I) of the polynomials in I is given by
√
I ⊃ I. Specifically, if we

are given another polynomial η(x) that also vanishes on the common zero set Z(I),

then there must be positive integer n such that ηn(x) ∈ I.

We denote the ideal generated by a function f by (f) = {µ|µ = fγ}, where

γ is an arbitrary polynomial. The identity in this ideal is the zero polynomial. In

particular, (f) is the family of all functions that have f as a factor. We note that the

set of common zeros of all the functions in (f), denoted by Z[(f)] is the same as the

zero set of f , denoted by Z[f ].

Lemma 18. Let f, g be two polynomials in C[x1, · · · , xn] with the same zero set.

Then the two polynomials must have (up to scaling) the same factors.

Proof. Suppose Z[f ] = Z[g] = Z is the zero set of f and g. Since Z[f ] = Z[(f)], we

have Z[(f)] = Z[(g)] = Z. By the Hilbert’s Nullstellensatz, we have

I(Z(f)) =
√

(f), I(Z(g)) =
√

(g).

Since Z(f) = Z(g), we then have I(Z(f)) = I(Z(g)) and hence
√

(f) =
√

(g). As

mentioned above, we have I ⊂
√
I for any ideal I. Therefore, we have (f) ⊂

√
(f)

and (g) ⊂
√

(g). This implies that f ∈
√

(f) and g ∈
√

(g). Because we have√
(f) =

√
(g), we can obtain that f ∈

√
(g) and g ∈

√
(f). By which we have that

there exist m,n ∈ Z and p, q ∈ C[x1, · · · , xn] such that

fn = p · g, gm = q · f.
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Therefore, we can obtain that the irreducible factors of g are of f as well and vice

versa, which proves the desired conclusion.

With this conclusion, we can now prove Proposition 1.

Proof of Proposition 1. The proof of the existence and uniqueness about ψ is same

as the proof of Proposition A.3 in [88] and thus we omit them here.

In this proof, we show thatBW (ψ) ⊆ BW (ψ1). Note that the algebraic surface

X = {p = P [ψ] = 0} is the union of irreducible surfaces Xj = {pij = 0} ⊂ Cn. Define

ν(x1, · · · , xn) = (ej2πx1 , · · · , ej2πxn).

Let Sj = ν−1(Xj ∩ Tn). Then we have a decomposition of S as the union of surfaces

Sj. If ψ1 is another trigonometric polynomial with S as the zero level set as well.

Then ψ1 vanishes on each Sj. Let q = P [ψ1]. Then we have q = 0 on the infinite set

ν(Sj), by which we can infer that q and p will have the same zero set using Theorem

19. Then by Lemma 18, we have p | q, which implies that BW (ψ) ⊆ BW (ψ1).

2.8.7 Proof of results in Section 2.5

The key property of surfaces that we exploit is that the dimension of the

intersection of two band-limited surfaces of dimension k is strictly lower than k,

provided their level set functions do not have any common factors. Hence, if we

randomly sample one of the surfaces, the probability that the samples fall on the

intersection of the two surfaces is zero. This result enables us to come up with the

sampling guarantees. We will now show the results about the intersections of the zero

sets of two trigonometric surfaces.
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2.8.7.1 Intersection of surfaces

We will first state a known result about the intersection of the zero sets of

two polynomials (non-trigonometric) whose level set functions do not have a common

factor.

Theorem 19 ( [46],pp.115, Theorem 14). Let S[ψ] and S[η] be two surfaces of di-

mension n− 1 over a field K, which are the zero sets of the polynomials ψ : Kn → K

and η : Kn → K, respectively. If ψ and η do not have a common factor, then

dim
(
S[ψ] ∩ S[η]

)
< n− 1.

The above result is a generalization of the two dimensional case (C2) in [88],

where Bézout’s inequality was used to prove the result. Specifically, the result in [88]

suggests that the intersection of two curves consists of a set of isolated points, if

their potential function does not have any common factor. Theorem 19 generalizes

the above result to n > 2; it suggests that the intersection of two surfaces with

dimension k is another surface, whose dimension is strictly less than k. For instance,

the intersection of two 3-D surfaces which are given by the zero level set of some

polynomials, could yield 2D curves or isolated points. We now extend Theorem 19

to trigonometric polynomials using the mapping ν specified by (2.4).

Lemma 20. Let S[ψ] and S[η] within [0, 1]n ⊂ Rn be two surfaces of dimension

n− 1 over R, which are the zero level sets of the trigonometric polynomials ψ and η.

Suppose ψ and η do not have a common factor, then

dim(S[ψ] ∩ S[η]) < n− 1.
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Proof. Let ν = (ν1, · · · , νn) be defined by (2.4). We now would like to prove the

result by way of contradiction. Suppose

dim(S[ψ] ∩ S[η]) = dim(S[ψ]) = dim(S[η]) = n− 1.

This implies that ν(S[ψ]∩S[η]) will have the same dimension of ν(S[ψ]) and ν(S[η]).

However, this is impossible according to Theorem 19. Therefore, we have the desired

result.

Based on this lemma, we can directly have the following Corollary.

Corollary 21. Suppose ψ(x), η(x),x ∈ [0, 1]n are two trigonometric polynomials as

in Lemma 20. Consider the n − 1 dimensional Lebesgue measure on S[ψ]. Then

this Lebesgue measure of the intersection of the zero level sets of the trigonometric

polynomials is zero, i.e.,

m(S[ψ] ∩ S[η]) = 0.

The Lebesgue measure can be viewed as the area of the n − 1 dimensional

surface. For example, when n = 3, S[ψ] and S[η] are 2-D surfaces, while their

intersection is a 1-D curve or a set of isolated points with zero area.

2.8.7.2 Proof of Proposition 9

Proof. We note that N ≥ |Λ| − 1 is a necessary condition for the matrix to have a

rank of |Λ|−1. We now assume that the surface is sampled with N ≥ |Λ|−1 random

samples, chosen independently, denoted by xi; i = 1, · · · , N ∈ S[ψ]. Since c ↔ ψ is

a valid non-trivial null-space vector for the feature matrix ΦΛ(X) formed from these
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samples, we have rank (ΦΛ(X)) ≤ |Λ| − 1. The polynomial ψ(x) = cTΦΛ(x) is the

minimal irreducible polynomial that defines the surface.

We now prove the desired result by contradiction. Assume that these exists

another linearly independent null-space vector d ↔ η or equivalently the rank of

ΦΛ(X) is strictly less than |Λ| − 1. Since c and d are linearly independent and ψ(x)

is the minimal polynomial, we know that ψ(x) and η(x) will not share a common

factor. Also note that xi ∈ S[ψ] ∩ S[η]. However, since ψ(x) and η(x) do not share

a common factor, the probability of each sample to be at the intersection of the two

polynomials (xi ∈ S[ψ] ∩ S[η]) is zero by Corollary 21. Therefore, with probability 1

that such d does not exist, meaning that with probability 1 that the feature matrix

will be of rank |Λ| − 1 when N ≥ |Λ| − 1.

2.8.7.3 Proof of Proposition 11

Proof. We note that N ≥ |Λ| − 1 is a necessary condition for the matrix to have

a rank of |Λ| − 1. We now assume that the surface is sampled with N random

samples xi; i = 1, · · · , N satisfying the conditions in Proposition 11. The minimal

polynomial ψ(x) = cTΦΛ(x) that defines the surface can be factorized as ψ(x) =

ψ1(x) · ψ2(x) · · ·ψM(x).

We will prove the result by contradiction. Assume that these exists another

linearly independent null-space vector d↔ η, or equivalently the rank of ΦΛ(X) is less

than |Λ|−1. Since c and d are linearly independent, ψ and η should differ by at least

one factor. Without loss of generality, let us assume that η(x) = µ(x)
∏M−1

i=1 ψi(x),

where µ is an arbitrary polynomial of bandwidth ΛM . Besides, µ and ψM does not
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share a factor. Using the result of Proposition 9, we see that the probability of µ and

an irreducible ψM vanish at |Λi| − 1 independently drawn random locations is zero.

If multiple factors are shared, the same argument can be extended to each one of the

factors independently.

2.8.7.4 Proof of Proposition 13

Proof. We note that N ≥ |Γ|− |Γ	Λ| is a necessary condition for the matrix to have

the specified rank. We now assume that the surface is sampled with N ≥ |Γ|−|Γ	Λ|

random samples, chosen independently. We note that c ↔ ψ specified by (2.7), as

well as the |Γ	 Λ| translates of c within Γ, are valid linearly independent null-space

vectors of ΦΛ(X). We thus have

rank (ΦΛ(X)) ≤ |Γ| − |Γ	 Λ| (2.63)

We will show that the rank condition can be satisfied with probability 1 by

contradiction. Assume that these exists another linearly independent null-space vec-

tor d ↔ η or equivalently the rank of ΦΛ(X) is less than |Γ| − |Γ 	 Λ|. Since d are

linearly independent with c and its translates within Γ, we cannot express d as the

linear combinations of the the other null-space vectors. Specifically, we have

η(x) 6=
∑

k∈Γ	Λ

αk ψ(x) exp(j2πkTx) (2.64)

= ψ(x)
∑

k∈Γ	Λ

αk exp(j2πkTx)︸ ︷︷ ︸
γ(x)

= ψ(x)γ(x). (2.65)

Here αk is an arbitrary coefficients and hence γ is an arbitrary polynomial. The linear

independence property implies that η(x) cannot have ψ(x) as a factor. Since ψ(x)
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is the minimal polynomial, this also means that η and ψ does not have any common

factor.

Consider now the random sampling set xi; i = 1..|Γ| − |Γ	 Λ|. We have

cTΦΛ(xi) = dTΦΛ(xi) = 0, i = 1, · · · , |Λ| − 1.

This implies that xi ∈ S[ψ] ∩ S[η]. However, since ψ(x) and η(x) do not share

a common factor, the probability of each sample to be at the intersection of the

two polynomials (xi ∈ S[ψ] ∩ S[η]) is zero by Corollary 21. Therefore, we have

rank (ΦΛ(X)) = |Γ| − |Γ	 Λ| with probability one.

2.8.7.5 Proof of Proposition 14

Proof. We note that N ≥ |Γ| − |Γ 	 Λ| is a necessary condition for the matrix

to have the specified rank. We now assume that the surface is sampled with N

random samples satisfying the sampling conditions in Proposition 14. The minimal

polynomial ψ(x) = cTΦΛ(x) that defines the surface can be factorized as ψ(x) =

ψ1(x) · ψ2(x) · · ·ψM(x).

Assume that there exists another linearly independent null-space vector d↔ η

or equivalently the rank of ΦΛ(X) is less than |Γ| − |Γ 	 Λ|. Similar to the above

arguments, if η and ψ does not have any common factors, the rank condition is

satisfied with probability 1. Similar to Section 2.8.7.3, linear independence implies

that η(x) cannot be a factor of ψ; there is at least one factor ψi that is distinct. Based

on Proposition 13, these factors cannot vanish on more than |Γi| − |Γi	Λi| common

samples.
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CHAPTER 3

LEARNING FUNCTIONS ON UNION OF SURFACES: LINKS TO
NEURAL NETWORK

3.1 Introduction

Several imaging algorithms were introduced to exploit the extensive redun-

dancy with images to recover them from noisy and possibly undersampled measure-

ments. For instance, several patch-based image denoising methods were introduced

in the recent past. Algorithms such as non-local means perform averaging of similar

patches within the image to achieve denoising [17]. Similar patch-based regulariza-

tion strategies are used for image recovery from undersampled data [77,143]. Similar

approaches are also used for the recovery of images in a time series by exploiting their

non-local similarity [97,99]. The success of these methods could be attributed to the

manifold assumption [39, 117], which states that signals in real-world datasets (e.g.

patches in images) are restricted to smooth manifolds in high dimensional spaces.

In particular, the regularization penalty used in non-local methods can be viewed as

the energy of the signal gradients on the patch manifold rather than in the original

domain, facilitating the collective recovery of the patch manifold from noisy mea-

surements [11]. In particular, non-local methods estimate the interpatch weights,

which are used for denoising; the interpatch weights are equivalent to the manifold

Laplacian, which captures the structure of the manifold. Similarly, image denoising

approaches such as BM3D [26] that cluster patches, followed by PCA approximations

of the cluster, can also be viewed as modeling the tangent subspaces of the patch
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manifold in each neighborhood. Patch dictionary based schemes, which allow the co-

efficients to be adapted to the specific patch, could also be viewed as tangent subspace

approximation methods.

Convolutional neural networks are now emerging as very powerful alternatives

for image denoising [126,150] and image recovery [3,50]. Rather than averaging sim-

ilar patches, neural networks learn how to denoise the image neighborhoods from

example pairs of noisy and noise-free patches. These frameworks can be viewed as

learning a multidimensional function in high dimensional patch spaces. In particular,

the inputs to the network are noisy patches and the corresponding outputs are the de-

noised patches/pixels. We note that the learning of such functions using conventional

methods will suffer from the curse of dimensionality. Specifically, large amounts of

training data may be needed to learn the parameters of such a high-dimensional func-

tion, if represented using conventional methods. While the empirical performance of

neural networks is impressive, the mathematical understanding of why and how they

can learn complex multidimensional functions in high-dimensional spaces from rela-

tively limited training data is still emerging. We note that the manifold assumption is

also used in the CNN literature to explain the good performance of neural networks.

With the goal of understanding the above algorithms from a geometrical per-

spective, we consider the following conceptual problems (a) when can we exactly

learn and recover a function that lives on a surface, from few input-output examples,

(b) can these results explain the good performance of imaging algorithms that use

manifold structure. We note that many different surface models including parametric
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shape models [52,65], local and multi-resolution representations [93,110], and implicit

level-set [64,90,109] shape representations have been used in low-dimensional settings

(e.g. 2D/3D).

In the previous chapter, we show that under the above assumptions on the sur-

face, a non-linear mapping of the points on the surface will live on a low-dimensional

feature subspace, whose dimension depends on the complexity of the surface. Specif-

ically, one can transform each data point to a feature vector, whose size is equal to

the number of basis functions used for the surface representation. Since we use a

linear combination of complex exponentials to represent the surface, the lifting in

our setting is an exponential mapping. We use the low-rank property of the feature

matrix to estimate the surface from few of its samples. Our sampling results show

that an irreducible surface can be perfectly recovered from very few samples, whose

number is dependent on the bandwidth.

We now show that the low-rank property can be used to efficiently represent

multidimensional functions of points living on the surface. In particular, we are only

interested in the good representation of the function when the input is on or in the

vicinity of the surface. We assume the functions are linear combination of the same

basis functions (exponentials in our case). Since such representations are linear in the

feature space, the low-rank nature of the exponential features provides an elegant ap-

proach to represent the function using considerably fewer parameters. In particular,

we show that the feature vectors of a few anchor points on the surface span the space,

which allows us to efficiently represent the function as the interpolation of the function
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values at the anchor points using a Dirichlet kernel. The significant reduction in the

number of free parameters offered by this local representation makes the learning of

the function from finite samples tractable. We note that the computational structure

of the representation is essentially a one-layer kernel network. Note that the approx-

imation is highly local; the true function and the local representation match only

on the surface, while they may deviate significantly on points which are not on the

surface. We demonstrate the preliminary utility of this network in denoising, which

shows improved performance compared to some state-of-the-art methods. Here, we

model the denoiser as a function f : Rp2 → R that provides a noise-free center pixel

of a p×p noisy patch. The noisy patch is assumed to a point in p2 dimensional space,

close to the low-dimensional patch surface or union of surfaces. We also show that

this framework can be used to learn a manifold, which can be viewed as the signal

subspace version of the null-space based kernel low-rank algorithm considered above.

In this case, the network structure is an auto-encoder.

This work is related to kernel methods, which are widely used for the approx-

imation of functions [11, 23, 70]. It is well-known that an arbitrary function can be

approximated using kernel methods, and the computational structure resembles a

single hidden layer neural network. Our work has two key distinctions with the above

approaches: (a) unlike most kernel methods that choose infinite bandwidth kernels

(e.g. Gaussians), we restrict our attention to a band-limited kernel. (b) We focus on

a restrictive data model, where the data samples are localized or close to the zero set

of a band-limited function. We focus on bandlimited surfaces in this work to borrow
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the theoretical tools from the previous chapter. We stress that our main focus is on

high-dimensional (� 3) extensions of the level set approach and generalization to

shape recovery. Non-parametric and even parametric level-set methods [13, 140] will

be associated with very high computational complexity in this setting without the

proposed computational approaches, and has not been reported to the best of our

knowledge.

3.2 Recovery of functions on surfaces

As discussed in the introduction, modern machine learning algorithms pre-

learn functions from given input and output data pairs [59]. For example, CNN based

denoising approaches that provide state-of-the-art results essentially learn to generate

noise-free pixels or patches from given training data with several noisy and noise-free

patch pairs [126, 150]. The problem can be formulated as estimating a nonlinear

function y = f(x), given input and output data pairs (xi,yi); i = 1, .., Ntrain. A

challenge in the representation of such high dimensional function is the large number

of parameters, which is also termed as the curse of dimensions. Kernel methods [94],

random forests [115] and neural networks [149] provide a powerful class of machine

learning models that can be used in learning highly nonlinear functions. These models

have been widely used in many machine learning tasks [49].

We now show that the results shown in the previous chapter provide an attrac-

tive option to compactly represent functions, when the data lie on a smooth surface

or manifold in high dimensional spaces. We note that the manifold assumption is

widely assumed in a range of machine learning problems [39, 43]. We now show that
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if the data lie on a smooth surface in high dimensional space, one can represent the

multidimensional functions very efficiently using few parameters.

We model the function using the same basis functions used to represent the

level set function. In our case1, we model it as a band-limited multidimensional

function:

f(x) =
∑
k∈Γ

βk exp(j2πkTx) = βTΦΓ(x), (3.1)

where x ∈ Rn. The number of free parameters in the above representation is |Γ|,

where Γ ⊂ Zn is the bandwidth of the function. Note that |Γ| grows rapidly with the

dimension n. The large number of parameters needed for such a representation makes

it difficult to learn such functions from few labeled data points. We now show that if

the points lie on the union of irreducible surfaces as in (2.11), where the bandwidth

of ψ is given by Λ ⊂ Γ, we can represent functions of the form (3.1) efficiently.

3.2.1 Compact representation of features using anchor points

We use the upper bound of the dimension of the feature matrix in (2.19) to

come up with an efficient representation of functions of the form 3.1. The dimension

bound (2.19) implies that the features of points on S[ψ] lie in a subspace of dimension

r = |Γ| − |Γ 	 Λ|, which is far smaller than |Γ| especially when the dimension n is

large. We note that kernel methods often approximate the feature space using few

eigen vectors of kernel PCA. However, there is no guarantee that these basis vectors

are mappings of some points on S. Hence, it is a common practice to consider all the

1We note that similar results can be obtained when the function f and the level set
function are represented as a linear combination of shift-invariant functions or polynomials.
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training samples to capture the low-dimensional feature vectors in kernel PCA. We

now show that it is possible to find a set of N ≥ r anchor points a1, · · · , aN ∈ S[ψ],

such that the feature space VΓ(S) is in span{ΦΓ(a1), · · · ,ΦΓ(aN)}. This result is a

Corollary of Proposition 14.

Corollary 22. Let ψ(x) be a randomly chosen trigonometric polynomial with M

irreducible factors as in (2.45). Suppose Γi ⊃ Λi is the non-minimal bandwidth of

each factor ψi(x) and Γ ⊃ Λ is the total bandwidth. Let {a1, · · · , aN} be N randomly

chosen anchor points on S[ψ] satisfying

1. each irreducible factor S[ψi] is sampled with Ni ≥ |Γi| − |Γi 	 Λi| points, and

2. the total number of samples satisfy N ≥ |Γ| − |Γ	 Λ|.

Then,

VΓ(S) ⊆ span {ΦΓ(ai); i = 1, · · · , N} (3.2)

with probability 1.

As discussed in Section 2.5.1.3, if we randomly choose N ≥ |Γ| − |Γ	 Λ| = r

points on S[ψ], the feature matrix will satisfy the conditions in Corollary 22 and

hence (3.2) with unit probability. This relation implies that the feature vector of

any point x ∈ S[ψ] can be expressed as the linear combination of the features of the
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anchor points ΦΓ(ai); i = 1, · · · , N :

ΦΓ(x) =
N∑
i=1

αi(x) ΦΓ(ai) (3.3)

=
[
ΦΓ(a1) · · · ΦΓ(aN)

]︸ ︷︷ ︸
Φ(A)

α1(x)
...

αN(x)


︸ ︷︷ ︸

α(x)

(3.4)

Here, αi(x) are the coefficients of the representation. Note that the complexity of

the above representation is dependent on N , which is much smaller than |Γ|, when

the surface is highly band-limited. We note that the above compact representation is

exact only for x ∈ S[ψ] and not for arbitrary x ∈ Rn; the representation in (3.4) will

be invalid for x /∈ S[ψ].

However, this direct approach requires the computation of the high dimen-

sional feature matrix, and hence may not be computationally feasible for high di-

mensional problems. We hence consider the normal equations and solve for α(x) as

α(x) =

Φ(A)HΦ(A)︸ ︷︷ ︸
K(A)


† (

Φ(A)HΦΓ(x)
)︸ ︷︷ ︸

kA(x)

, (3.5)

where (·)† denotes the pseudo-inverse.

3.2.2 Representation and learning of functions

Using (3.1), (3.4), and (3.5), the function f : Rn → Rm can be written as

f(x) = βT Φ(A) K (A)† kA(x) (3.6)

=

 f(a1)︷ ︸︸ ︷
βT ΦΓ(a1), . . . ,

f(aN )︷ ︸︸ ︷
βT ΦΓ(aN)


︸ ︷︷ ︸

F

K (A)† kA(x)︸ ︷︷ ︸
α(x)

(3.7)
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Here, f(x) is an M × 1 vector, while F is an M × N matrix. K(A) is an N × N

matrix and kA(x) is an N × 1 vector. Thus, if the function values at the anchor

points, specified by f(ai); i = 1, · · · , N are known, one can compute the function for

any point x ∈ S[ψ].

We note that the direct representation of a function f : Rn → R in (3.1)

requires |Γ| parameters, which can be viewed as the area of the green box in Fig. 2.3.

By contrast, the above representation only requires |Γ| 	 |Γ : Λ| anchor points, which

can be viewed as the area of the gray region in Fig. 2.3. The more efficient repre-

sentation allows the learning of complex functions from few data points, especially in

high dimensional applications.

We demonstrate the above local function representation result in a 2D setting

in Fig. 3.1. Specifically, the original band-limited function is with bandwidth 13×13.

The direct representation of the function has 13×13 = 169 degrees of freedom. Now,

if we only care about points on a curve which is with bandwidth 3 × 3, then the

same function living on the curve can be represented exactly using 48 anchor points,

thus significantly reducing the degrees of freedom. However, note that the above

representation is only exact on the curve. We note that the function goes to zero as

one moves away from the curve.

The choice of anchor points depends on the geometry of the surface, includ-

ing the number of irreducible components. For arbitrary training samples, we can
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(c) Function on curve
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(f) Approx on curve

Figure 3.1. Illustration of the local representation of functions in 2D. We consider the
local approximation of the band-limited function in (b) with a bandwidth of 13× 13,
living on the band-limited curve shown in (a). The bandwidth of the curve is 3× 3.
The curve is overlaid on the function in (b) in yellow. The restriction of the function
to the vicinity of the curve is shown in (c). Our results suggest that the local function
approximation requires 132− 112 = 48 anchor points. We randomly select the points
on the curve, as shown in (d). The interpolation of the function values at these points
yields the global function shown in (e). The restriction of the function to the curve
in (f) shows that the approximation is good.

estimate the unknowns F in (3.7) from the linear relations

[y1, ..yP ]︸ ︷︷ ︸
Y

= F [α(x1), . . . ,α(xP )]︸ ︷︷ ︸
Z

(3.8)

as F = YZH
(
ZZH

)†
. The above recovery is exact when we have N = r achor points

because Z has full column rank in this case. The reason why Z has full column rank

is due to (3.4) and (3.5). Equation (3.4) suggests that rank(Z) ≥ N , while equation

(3.5) shows rank(Z) ≤ N . Therefore, we have rank(Z) = N , indicating that Z has
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full rank in this case. When N > r, the F is obtained using the pseudo-inverse, which

is based on the least square approximation.

3.2.3 Efficient computation using kernel trick

We use the kernel-trick to evaluate K (A) and kA(x), thus eliminating the

need to explicitly evaluating the features of the anchor points and x. Each entry of

the matrix K (A) is computed as in (2.51), while the vector kA(x) is specified by:

(kA(x))i = ΦΓ(ai)
HΦΓ(x)︸ ︷︷ ︸

κ(ai,x)

, (3.9)

which can be evaluated efficiently as nonlinear function κ (termed as kernel function)

of their inner-products in Rn. We now consider the kernel function κ for specific

choices of lifting.

Using the lifting in (2.15), we obtain the kernel as

κ(x,y) =
∑
k∈Γ

exp(j2πkT (y − x)).

Note that the kernel is shift invariant in this setting. Since κ : Rn → R is an n di-

mensional function, evaluating and storing it is often challenging in multidimensional

applications. We now focus on approximating the kernel efficiently for fast compu-

tation. We consider the impact of the shape of the bandwidth set Γ on the shape of

the kernel. Specifically, we consider sets of the form

Γ = {k ∈ Zn, ||k||q ≤ d}, (3.10)

where d denotes the size of the bandwidth. The integer q specifies the shape of Γ [142],
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which translates to the shape of the kernel

kqd,n(x) :=
∑

k∈Zn,||k||q≤d

exp(j2πkTx). (3.11)

We term the q = 1 case as the diamond Dirichlet kernel. If q = 2, we call it the

circular Dirichlet kernel. We call the Dirichlet kernel the cubic Dirichlet kernel if

q =∞. See Figure 3.2 for the bandwidth and Figure 3.3 to see the associated kernel.

(a) q = 1 (b) q = 2 (c) q =∞

Figure 3.2. bandwidth of the set Λ with different q values.

(a) Gaussian ker-
nel

(b) Dirichlet with
q = 2

(c) Dirichlet with
q =∞

Proposed
Sigmoid
ReLU
Tanh

(d) Plot of γ

Figure 3.3. Visualization of kernels in R2 and the non-linear function γ with some
commonly used activation functions.
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We note from the above figures that the circular Dirichlet kernel (q = 2) is

roughly circularly symmetric, unlike the triangular or diamond kernels. This implies

that we can safely approximate it as

κ(x,y) ≈ g(‖x− y‖2) (3.12)

where g : R+ → R. We note that this approximation results in significantly reduced

computation in the multidimensional case. The function g may be stored in a look-up

table or computed analytically. We use this approach to speed up the computation

of multidimensional functions in Section 3.3.

An additional simplification is to assume that x and y are unit-norm vectors.

In this case, we can approximate

g(||xi − yi||22) = g(||xi||22 + ||yi||22 − 2〈xi,yi〉) ≈ g(2− 2〈x,y〉) =: γ(〈x,y〉), (3.13)

where γ(z) = g(1 − z/2). Here, we term γ as the activation function. While we do

not make this simplifying assumption in our computations, it enables us to show the

similarity of the computational structure of (3.6) to current neural network. The plot

of this activation function, along with commonly used activation functions, is shown

in Figure 3.3 (d).
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With the aforementioned analysis, we can then rewrite (3.6) as

f(x) = [f1, . . . , fN ]︸ ︷︷ ︸
F

K (A)†

g(‖x− a1‖2)
...

g(‖x− aN‖2)


︸ ︷︷ ︸

kA(x)

(3.14)

≈ F K(A)†︸ ︷︷ ︸
F̃

γ (〈x, a1〉)
...

γ (〈x, aN〉)


︸ ︷︷ ︸

ΓA(x)

(3.15)

In the second step, we used the approximation in (3.13).

3.2.4 Optimization of the anchor points and coefficients

The above results show the existence of a computational structure of the form

(3.15) with N anchor points a1, .., aN on the surface and the corresponding coefficients

f̃1, .., f̃N that can represent the function exactly. We note that the anchor points

(a) One layer network (b) Two layers network

Figure 3.4. Computational structure of function evaluation. (a) corresponds to (3.6)
to compute the band-limited multidimensional function f on S[ψ]. The inner-product
between the input vector x and the anchor templates on the surface are evaluated,
followed by non-linear activation functions γ to obtain the coefficients αi(x). These
coefficients are operated with the fully connected linear layers K†A and F(A). The

fully connected layers can be combined to obtain a single fully connected layer F̃.
Note that this structure closely mimics a neural network with a single hidden layer.
(b) uses an additional quadratic layer, which combines functions of a lower bandwidth
to obtain a function of a higher bandwidth.
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need not to be selected as a subset of the training data. We note that Corollary 22

guarantees K(A) to have full column rank as N = r. However, the condition number

of this matrix may be poor, depending on the choice of the anchor points. It may

be worthwhile to choose the anchors such that the condition number of K(A) is low,

which will reduce the noise amplification in (3.5).

We hence propose to solve for the anchor points A and the corresponding

coefficients F̃ such that it minimizes the least square error evaluated on the training

data:

F̃∗,A∗ = arg min
F̃,A

Ntrain∑
i=1

‖F̃ ΓA(xi)− yi‖2 (3.16)

We propose to minimize the above expression using stochastic gradient descent to

simultaneously derive the anchor points a1, .., aN as well as the coefficients, which are

the learnable parameters of the single layer network. Specifically, we consider noisy

patches as inputs and noise-free pixels as the desired outputs; the parameters of the

network are then obtained by minimizing (3.16).

3.3 Relation to neural networks

We now briefly discuss the close relation of the proposed framework with neural

networks. We consider the function learning setting, which is considered in Section 3.2

and show that the computational structure closely mimics a neural network with one

hidden layer. We discuss briefly the benefits of depth in improving the representation.

We also show that the above framework can be used to approximate the learning of

a manifold from data, which can be viewed as a signal subspace alternative to the

null-space approach considered in Section 2.5. We also show that the computational
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structure closely mimics an auto-encoder.

3.3.1 Task/function learning from input output pairs

We now focus on the learning of a function (3.14) from training data pairs and

will show its equivalence with neural networks. Note that the computation involves

the inner product of the input signal x with templates ai; i = 1, .., N , followed by the

non-linear activation function γ to obtain kA(x). These terms are then weighted by

the fully connected layer K (A)†, followed by weighting by the second fully connected

layer F̃. See Fig. 3.4 for the visual illustration.

As noted above, the representation using anchor points to reduce the degrees

of freedom significantly compared to the direct representation. However, we note

that the number of parameters needed to represent a high bandwidth function in

high dimensions is still high. We now provide some intuition on how the low-rank

tensor approximation of functions and composition can explain the benefit of common

operations in deep networks.

We now consider the case when the band-limited multidimensional function

f : Rn → R in (3.1) can be approximated as

f(x) =
(∑

wi fi(x)
)2

. (3.17)

Clearly, the bandwidth of f is almost twice that of fi : Rn → R, showing the benefit

of adding layers. While an arbitrary function with the same bandwidth as f cannot

be represented as in (3.17), one may be able to approximate it closely. The new layer

will have a quadratic non-linearity Q, if the function has the form (3.17). Note that

one may use arbitrary non-linearity in place of the quadratic one in (3.17).
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Similarly, one may perform a low-rank tensor approximation of an arbitrary

N dimensional function f : Rn → R. Specifically, the approximation involves the

sum of products of 1-D functions.

f(x1, .., xN) ≈
r∑
i=1

h
(i)
1 (x1) · h(i)

2 (x2) . . . h
(i)
N (xN), (3.18)

where hi : R→ R. The above sum of products can also be realized by taking weighted

linear combination of 1-D functions, followed by a non-linearity as in (3.17). This

allows one to have a hierarchical structure, where lower dimensional functions are

pooled together to represent a multidimensional function.

In image processing applications, the functions to be learned are shift-invariant.

This allows one to learn functions of small image patches (e.g. 3×3) of a specified di-

mension at each layer. The functions on nearby pixels in the output thus correspond

to information from different 3 × 3 neighborhoods. The low-dimensional functions

from non-overlapping 3× 3 neighborhoods could be combined with downsampling as

in (3.18) to represent a high dimensional function (e.g. 9 × 9) neighborhoods. The

process can be repeated to improve the efficiency of representation.

3.3.2 Relation to auto-encoders

We note that the space of band-limited functions of the form (3.1) can rea-

sonably approximate lower order polynomials in Rn for sufficiently high bandwidth

Γ [123]. In particular, let us assume that there exists a set of coefficients β such that

x ≈ x̃ =
∑
k∈Γ

βk exp(j2πkTx) (3.19)



88

In this case, the above results imply that one can represent any point on the surface

S[ψ] as

x ≈ [a1, .., an]︸ ︷︷ ︸
A

K (A)† kA(x)︸ ︷︷ ︸
α(x)

(3.20)

We note that the resulting network is hence essentially an auto-encoder. Specifically,

the inner-products between the feature vectors of x and the anchor point ai denoted

by α(x) can be viewed as the latent features or compact code. As described previously,

the coefficients α = K(A)†kA(x) captures the geometry of the surface, while the top

layer A is the decoder that recover the signal from its latent vectors.

We note that the surface recovery algorithms in Section 2.5 follow a null-

space approach, where we identify the null-space of the feature space or equivalently

the annihilation functions from the samples of the surface. Specifically, the sum of

squares of the null-space functions in Section 2.5.2 provides a measure of the error in

projecting the feature vector to the null-space of the feature matrix.

γ(x) =

|Γ	Λ|∑
i=1

|µi(x)|2 =

|Γ	Λ|∑
i=1

|nTi ΦΓ(x)|2 (3.21)

= ‖N ΦΓ(x)‖2 (3.22)

where ni are the null-space vectors. The projection energy is zero if the point x is on

S and is high when it is far from it.

By contrast, the auto-encoder approach can be viewed as a signal subspace

approach, where we project the samples to the basis vectors specified by the feature

vectors of the anchors ΦΓ(ai). Specifically, we use the non-linearity specified by (3.13)

and trained the network parameters (A as well as the weights of the inner-products)



89

using stochastic gradient descent. The training data corresponds to randomly drawn

points on the surface. To ensure that the network learns a projection, we trained

the network as a denoising auto-encoder; the inputs correspond to samples on the

surface corrupted with Gaussian noise, while the labels are the true samples. Once

the training is complete, we plot the approximation error

E(x) = ‖x− FK(A)†kA(x)‖2 = ‖
(
I− FK(A)†kA

)︸ ︷︷ ︸
R

(x)‖2 (3.23)

as a function of the input point in Fig. 3.5.

We trained the network using the exemplar curve shown in Fig. 2.16. We

randomly choose 1000 points on the curve as the training data and 250 features are

chosen in the middle layer. The bandwidth of the Dirichlet kernel is chosen to be 15.

The trained network is then used to learn the curve. The learned results are shown

in Fig. 3.5. From which one can see that the proposed learning framework performs

well. We note that the projection error is close to zero on the surface, while it is

high if it is away from the surface. Note that this closely mimics the plot in Fig.

2.16. Once trained, the surface can be estimated in low-dimensional settings as the

zero set of the projection error as shown in Fig. 3.5.(b), which closely approximates

the true curve in (c). We note that R can be viewed as a residual denoising auto-

encoder. Once trained, this network can be used as a prior in inverse problems as

in [3], where we have used the null-space network in Section 3.3. We have also used

the null-space prior (3.21) in our prior work [100], where the null-space basis was

learned as described in Section 2.6.
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(a) Learned curve (b) Contour line (c) Original curve

Figure 3.5. Illustration of the surface learning network using the curve in Fig. 2.16.
(a) and (b) are the learned results. We compared the learned curve (blue curve) with
the original curve (red curve) in (c). From which we see that the two curves are
almost the same, indicating that the learned network performs well.

3.4 Illustration in denoising

We now illustrate the preliminary utility of the proposed network in image

denoising. Specifically, we consider the learning of a function f : Rp2 → R, which

predicts the denoised center pixel of a patch from the noisy p×p patch. The function f

in p2 dimensional space is associated with a large number of free parameters; learning

of these unknowns are challenging due to the curse of dimensionality. Then the result

in the previous section offers a work-around, which suggests that the function can be

expressed as the linear combination of the features of “anchor-patches”, weighted by

p.

We propose to learn the anchor patches ai and the function values f(ai) from

exemplar data using stochastic gradient descent to minimize (3.16). Note that the

learned representation is valid for any patch, and hence the proposed scheme is essen-

tially a convolutional neural network. The difference of our structure in (3.15) with

the commonly used convolutional neural networks (CNN) structure is the activation
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function γ. We replaced the ReLU non-linearity in a network with the proposed func-

tion γ in a single layer network. For the two-layer network, we replaced the ReLU

non-linearity with γ and Q as indicated in (3.17).

We first tested the performance of the network on the MNIST dataset [62]. In

the experiments, we choose the patch size to be 7 × 7 and d = 7 in (3.11). We also

trained a ReLU network with the same parameters for comparison. Besides, we com-

pared the proposed scheme against non-local means (NLM) and dictionary learning

(DL) [35]. All algorithms, except for NLM were trained using the MNIST training

set provided in TensorFlow. For the proposed network and the ReLU network, they

are trained using 300 epoches and for the dictionary learning method, 500 iterations

are used to learn the dictionaries. The comparison of the testing results is shown in

Figure 3.6. The comparison of the PSNR is reported in the caption. The results show

that the neural network based approaches offer improved performance compared to

dictionary learning and non-local methods. Our results also show that the proposed

networks provide comparable, if not slightly better performance, compared to the

ReLU networks. The results also show the slight improvement in performance offered

by the proposed two-layer networks over single layer networks.

The size of the image in the MNIST dataset is small. To better demonstrate

the performance of the proposed network, we also applied the proposed scheme to

the denoising of natural images. The algorithm was trained on the images of Hill,

Cameraman, Couple, Bridge, Barbara and Boat at three different noise settings. We

assume the noise is Gaussian white noise in the natural images setting. We compared



92

Figure 3.6. Comparison of our learned denoiser using the proposed activation func-
tion and the ReLU activation function. The testing results show that the denoising
performance using the proposed activation function is comparable to the performance
using ReLU. The eight rows in the figure correspond to the original images, the noisy
images, the denoised images using the proposed one-layer network, the denoised im-
ages using one layer ReLU network, the denoised images using the proposed two-layer
network, the denoised images using two-layer ReLU network, the denoised images us-
ing dictionary learning and the denoised images using non-local means. The averaged
PSNR of the denoised images using the proposed one-layer network, one layer ReLU
network, proposed two-layer network, two-layer ReLU network, dictionary learning
and non-local means are 19.68 dB, 20.03 dB, 20.86 dB, 17.48 dB, 14.76 dB and 14.28
dB respectively. From the quantitative results, we can see that our proposed one-layer
network performs comparable to the one-layer ReLU network. For the proposed two-
layer network, the performance is getting better from both quantitative and visual
points of view. For the two-layer ReLU network, visually the performance is better
than that of the one-layer ReLU network. But the PSNR is getting worse. The main
reason that causes the low PSNR for the two-layer ReLU network is the change of
the pixel values on each hand-written digit.

the proposed scheme against dictionary learning (DL), non-local means (NLM) and

transform learning (TL) [107]. In the experiments for natural images, the patch size

is chosen as 9 × 9 and d = 7 in (3.11). For the proposed network and the ReLU
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network, they are trained using 300, 400, 450 epoches corresponding to the noise

level σ = 10, 20, 100, and for the dictionary learning method, 500 iterations are used

to learn the dictionaries. We then tested the denoising performance on two natural

images: Man and Lighthouse.

The quantitative results (PSNR) of the algorithm are shown in Table 3.1, while

the results on Man and Lighthouse with noise of standard deviation σ = 20 are shown

in Fig. 3.7 and Fig. 3.8. In Table 3.1, Fig. 3.7 and Fig. 3.8, “ReLU1” and “ReLU2”

represent one-layer ReLU network and two-layer ReLU network, while “Proposed1”

and “Proposed2” stand for the proposed one-layer network and proposed two-layer

network. The results show that the performance of the neural network schemes is su-

perior to classical methods and the proposed networks provide comparable or slightly

better performance than the ReLU networks.

Img. σ DL NLM TL ReLU1 ReLU2 Proposed1 Proposed2

10 26.63 26.64 27.41 30.29 31.11 30.99 31.19
Man 20 26.11 26.35 27.02 27.47 27.33 27.25 27.63

100 19.69 20.95 21.65 21.85 22.11 21.91 22.06
10 27.08 29.08 28.71 28.88 29.27 30.05 30.28

Lighthouse 20 25.51 25.21 25.92 26.25 26.33 26.69 26.74
100 19.14 20.14 20.15 20.21 20.46 20.35 20.47

Table 3.1. The PSNR (dB) of the denoised results for the two testing natural images
with different noise level.
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(a) Orig. (b) Noisy (c) DL (d) NLM (e) TL (f) ReLU2 (g) Prop.

(h) Orig. (i) Noisy (j) DL (k) NLM (l) TL (m)
ReLU2

(n) Prop.

Figure 3.7. Comparison of the proposed denoising algorithms on the image “Man”
with σ = 20.

(a) Orig. (b) Noisy (c) DL (d) NLM (e) TL (f) ReLU2 (g) Prop.

(h) Orig. (i) Noisy (j) DL (k) NLM (l) TL (m) ReLU
2

(n) Prop.

Figure 3.8. Comparison of the proposed denoising algorithms on the image “Light-
house” with σ = 20.

3.5 Conclusion

In this work, we considered a data model, where the signals are localized to

a surface that is the zero level set of a band-limited function ψ. The bandwidth
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of the function can be seen as a complexity measure of the surface. We show that

the non-linear features of the samples, obtained by an exponential lifting, satisfy

an annihilation relation. Using the annihilation relation, we developed theoretical

sampling guarantees for the unique recovery of the surface. Our main contribution

here is to prove that with probability 1, the surface can be uniquely recovered using

a collection of samples, whose number is equal to the degrees of freedom of the

representation. When the true bandwidth of the surface is unknown, which is usually

the case, we introduced a method using the SoS polynomial to specify the surface.

We also introduced the way to get back the samples when the original samples are

corrupted by noise.

We then use this model to efficiently represent arbitrary band-limited functions

f living on the surface. We show that the exponential features of the points on

the surface live in a low-dimensional subspace. This subspace structure is used to

represent the f efficiently using very few parameters. We note that the computational

structure of the function evaluation mimics a single-layer neural network. We applied

the proposed computational structure to the context of image denoising.
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CHAPTER 4

MODEL BASED COMPUTATIONAL IMAGING USING UNION OF
SURFACES PRIOR: DEEP GENERATIVE STORM MODEL

4.1 Introduction

The imaging of time-varying objects at high spatial and temporal resolution

is key to several modalities, including MRI and microscopy. A central challenge is

the need for high resolution in both space and time [66, 127]. Several computational

imaging strategies have been introduced in MRI to improve the resolution, especially

in the context of free-breathing and ungated cardiac MRI. A popular approach pur-

sued by several groups is self-gating, where cardiac and respiratory information is

obtained from central k-space regions (navigators) using bandpass filtering or cluster-

ing [19,24,40,41,103]. The data is then binned to the respective phases and recovered

using total variation or other priors. Recently, approaches using smooth manifold reg-

ularization have been introduced. These approaches model the images in the time

series as points on a high-dimensional manifold [5, 80, 81, 97, 100]. Manifold regular-

ization algorithms, including the smoothness regularization on manifolds (SToRM)

framework [5, 97, 100], have shown good performance in several dynamic imaging

applications. Since the data is not explicitly binned into specific phases as in the

self-gating methods, manifold algorithms are less vulnerable to clustering errors than

navigator-based corrections. Despite the benefits, a key challenge with the current

manifold methods is the high memory demand. Unlike self-gating methods that only

recover specific phases, manifold methods recover the entire time series. The limited
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memory on current GPUs restricts the number of frames that can be recovered simul-

taneously, which makes it challenging to extend the model to higher dimensionalities.

The high memory demand also makes it difficult to use spatial regularization priors

on the images using deep learned models.

Our main focus is to capitalize on the power of deep convolutional neural net-

works (CNN) to introduce a memory efficient generative or synthesis formulation of

SToRM. CNN based approaches are now revolutionizing image reconstruction, of-

fering significantly improved image quality and fast image recovery [30, 55, 78, 102,

136, 137, 144]. In the context of MRI, several novel approaches have been intro-

duced [138, 139], including transfer-learning [29], domain adaptation [48], learning-

based dynamic MRI [111], and generative-adversarial models [27, 28, 146]. Unlike

many CNN-based approaches, the proposed scheme does not require pre-training

using large amounts of training data. This makes the approach desirable in free-

breathing applications, where the acquisition of fully sampled training data is in-

feasible. We note that the classical SToRM approach can be viewed as an analysis

regularization scheme (see Fig. 4.1.(a)). Specifically, a non-linear injective mapping

is applied on the images such that the mapped points of the alias-free images lie on

a low-dimensional subspace [100, 153, 155]. When recovering images from undersam-

pled data, the nuclear norm prior is applied in the transform domain to encourage

their non-linear mappings to lie in a subspace. Unfortunately, this analysis approach

requires the storage of all the image frames in the time series, which translates to

high memory demand. The proposed generative SToRM formulation offers quite sig-
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nificant compression of the data, which can overcome the above challenge. Both

the relation between the analysis and synthesis formulations and the relation of the

synthesis formulation to neural networks were established in earlier work [153].

We assume that the image volumes in the dataset are smooth non-linear func-

tions of a few latent variables, i.e., xt = Gθ(zt), where zt are the latent vectors in

a low-dimensional space. xt is the t-th generated image frame in the time series.

This explicit formulation implies that the image volumes lie on a smooth non-linear

manifold in a high-dimensional ambient space (see Fig. 4.1.(b)). The latent variables

capture the differences between the images (e.g., cardiac phase, respiratory phase,

contrast dynamics, subject motion). We model the G using a CNN, which offers

a significantly compressed representation. Specifically, the number of parameters re-

quired by the model (CNN weights and latent vectors) are several orders of magnitude

smaller than required for the direct representation of the images. The compact model

proportionately reduces the number of measurements needed to recover the images.

In addition, the compression also enables algorithms with much smaller memory foot-

print and computational complexity. We propose to jointly optimize for the network

parameters θ and the latent vector zt based on the given measurements. The smooth-

ness of the manifold generated by Gθ(z) depends on the gradient of Gθ with respect

to its input. To enforce the learning of a smooth image manifold, we regularize the

norm of the Jacobian of the mapping ‖JzGθ‖2. We experimentally observe that by

penalizing the gradient of the mapping, the network is encouraged to learn meaning-

ful mappings. Similarly, the images in the time series are expected to vary smoothly
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in time. Hence, we also use a Tikhonov smoothness penalty on the latent vectors

zt to further constrain the solutions. We use the ADAM optimizer with stochastic

gradients, where random batches of zi and bi are chosen at iteration to determine the

parameters. Unlike traditional CNN methods that are fast during testing/inference,

the direct application of this scheme to the dynamic MRI setting is computation-

ally expensive. We use approximations, including progressive-in-time optimization

and an approximated data term that avoids non-uniform fast Fourier transforms, to

significantly reduce the computational complexity of the algorithm.

The proposed approach is inspired by deep image prior (DIP), which was

introduced for static imaging problems [131], as well as its extension to dynamic

imaging [54]. The key difference of the proposed formulation is the joint optimization

of the latent variables z and G. The work of Jin ea tl. [54] was originally developed

for CINE MRI, where the latent variables were obtained by linearly interpolating

noise variables at the first and last frames. Their extension to real-time applications

involved setting noise latent vectors at multiples of a preselected period, followed

by linearly interpolating the noise variables. This approach is not ideally suited

for applications with free breathing, when the motion is not periodic. Another key

distinction is the use of regularization priors on the network parameters and latent

vectors, which encourages the mapping to be an isometry between latent and image

spaces. Unlike DIP methods, the performance of the network does not significantly

degrade with iterations. While we call our algorithm “generative SToRM”, we note

that our goal is not to generate random images from stochastic inputs as in generative-
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adversarial networks (GAN). In particular, we do not use adversarial loss functions

where a discriminator is jointly learned as in the literature [15].

4.2 Background

4.2.1 Dynamic MRI from undersampled data: problem setup

Our main focus is to recover a series of images x1, ..xM from their undersampled

multichannel MRI measurements. The multidimensional dataset is often compactly

represented by its Casoratti matrix

X =
[
x1 ... xM

]
. (4.1)

Each of the images is acquired by different multichannel measurement operators

bi = Ai(xi) + ni, (4.2)

where ni is zero mean Gaussian noise matrix that corrupts the measurements.

4.2.2 Smooth manifold models for dynamic MRI

The smooth manifold methods model images xi in the dynamic time series as

points on a smooth manifoldM. These methods are motivated by continuous domain

formulations that recover a function f on a manifold from its measurements as

f = arg min
f

∑
i

‖f(xi)− bi‖2 + λ

∫
M
‖∇Mf‖2dx (4.3)

where the regularization term involves the smoothness of the function on the manifold.

This problem is adapted to the discrete setting to solve for images lying on a

smooth manifold from its measurements as

X = arg min
X

M∑
i=1

‖A(xi)− bi‖2 + λ trace(XLXH), (4.4)
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where L is the graph Laplacian matrix. L is the discrete approximation of the Laplace-

Beltrami operator on the manifold, which depends on the structure or geometry of

the manifold. The manifold matrix L is estimated from k-space navigators. Different

approaches, ranging from proximity-based methods [97] to kernel low-rank regular-

ization [100] and sparse optimization [80], have been introduced.

The results of earlier work [100,155] show that the above manifold regulariza-

tion penalties can be viewed as an analysis prior. In particular, these schemes rely

on a fixed non-linear mapping ϕ of the images. The theory shows that if the images

x1, ..xM lie in a smooth manifold/surface or union of manifolds/surfaces, the mapped

points live on a subspace or union of subspaces. The low-dimensional property of the

mapped points ϕ(x1), ..ϕ(xM) is used to recover the images from undersampled data

or derive the manifold using a kernel low-rank minimization scheme:

X∗ = arg min
X

M∑
i=1

‖A(xi)− bi‖2 + λ ‖ [ϕ(x1), .., ϕ(xN)] ‖∗. (4.5)

This nuclear norm regularization scheme is minimized using an iterative reweighted

algorithm, whose intermediate steps match (4.4). The non-linear mapping ϕ may

be viewed as an analysis operator that transforms the original images to a low-

dimensional latent subspace, very similar to analysis sparsity-based approaches used

in compressed sensing.

4.2.3 Unsupervised learning using Deep Image Prior

The recent work of DIP uses the structure of the network as a prior [131],

enabling the recovery of images from ill-posed measurements without any training

data. Specifically, DIP relies on the property that CNN architectures favor image
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data more than noise. The regularized reconstruction of an image from undersampled

and noisy measurements is posed in DIP as

{θ∗} = arg min
θ
‖A(x)− b‖2 such that x = Gθ[z] (4.6)

where x = Gθ∗(z) is the recovered image, generated by the CNN generator Gθ∗ whose

parameters are denoted by θ. Here, z is the random latent variable, which is chosen

as random noise and kept fixed.

The above optimization problem is often solved using stochastic gradient de-

scent (SGD). Since CNNs are efficient in learning natural images, the solution often

converges quickly to a good image. However, when iterated further, the algorithm

also learns to represent the noise in the measurements if the generator has sufficient

capacity, resulting in poor image quality. The general practice is to rely on early

termination to obtain good results. This approach was recently extended to the dy-

namic setting by Jin et al. [54], where a sequence of random vectors was used as the

input.

4.3 Deep generative SToRM model

We now introduce a synthesis SToRM formulation for the recovery of images

in a time series from undersampled data (see Fig. 2.2.(b)). Rather than relying on a

non-linear mapping of images to a low-dimensional subspace [100] (see Fig. 4.1.(a)),

we model the images in the time series as non-linear functions of latent vectors living

in a low-dimensional subspace.
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4.3.1 Generative model

We model the images in the time series as

xi = Gθ(zi), i = 1, ..,M, (4.7)

where Gθ is a non-linear mapping, which is termed as the generator. Inspired by the

extensive work on generative image models [6, 45, 131], we represent Gθ by a deep

CNN, whose weights are denoted by θ. The parameters zi are the latent vectors,

which live in a low-dimensional subspace. The non-linear mapping Gθ may be viewed

as the inverse of the image-to-latent space mapping ϕ, considered in the SToRM

approach.

We propose to estimate the parameters of the network θ as well as the latent

vectors zi by fitting the model to the undersampled measurements. The main dis-

tinction of our framework with DIP, which is designed for a single image, is that we

use the same generator for all the images in the dynamic dataset. The latent vector

zi for each image is different and is also estimated from the measurements. This

strategy allows us to exploit non-local information in the dataset. For example, in

free-breathing cardiac MRI, the latent vectors of images with the same cardiac and

respiratory phase are expected to be similar. When the gradient of the network is

bounded, the output images at these time points are expected to be the same. The

proposed framework is hence expected to learn a common representation from these

time-points, which are often sampled using different sampling trajectories. Unlike

conventional manifold methods [80,97,100], the use of the CNN generator also offers

spatial regularization.
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Figure 4.1. Illustration of (a) analysis SToRM and (b) generative SToRM. Analysis
SToRM considers a non-linear (e.g. exponential) lifting of the data. If the original
points lie on a smooth manifold, the lifted points lie on a low-dimensional subspace.
The analysis SToRM cost function in (4.5) is the sum of the fit of the recovered
images to the undersampled measurements and the nuclear norm of the lifted points.
A challenge with analysis SToRM is its high memory demand and the difficulty in
adding spatial regularization. The proposed method models the images as the non-
linear mapping Gθ of some latent vectors zi, which lie in a very low-dimensional space.
Note that the same generator is used to model all the images in the dataset. The
number of parameters of the generator and the latent variables is around the size of
a single image, which implies a highly compressed representation. In addition, the
structure of the CNN offers spatial regularization as shown in DIP. The proposed
algorithm in (4.13) estimates the parameters of the generator and the latent variables
from the measured data. A distance regularization prior is added to the generator to
ensure that nearby points in the latent subspace are mapped to nearby points on the
manifold. Similarly, a temporal regularization prior is added to the latent variables.
The optimization is performed using ADAM with batches of few images.

It is often impossible to acquire fully-sampled training data in many free-

breathing dynamic imaging applications, and a key benefit of this framework over

conventional neural network schemes is that no training data is required. As discussed

previously, the number of parameters of the model in (4.7) is orders of magnitude
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smaller than the number of pixels in the dataset. The dramatic compression offered by

the representation, together with the mini-batch training provides a highly memory-

efficient alternative to current manifold based and low-rank/tensor approaches. Al-

though our focus is on establishing the utility of the scheme in 2-D settings in this

chapter, the approach can be readily translated to higher dimensional applications.

Another benefit is the implicit spatial regularization brought in by the convolutional

network as discussed for DIP. We now introduce novel regularization priors on the

network and the latent vectors to further constrain the recovery to reduce the need

for manual early stopping.

4.3.2 Distance/Network regularization

As in the case of analysis SToRM regularization [97, 100], our interest is in

generating a manifold model that preserves distances. Specifically, we would like the

nearby points in the latent space to map to similar images on the manifold. With this

interest, we now study the relation between the Euclidean distances between their

latent vectors and the shortest distance between the points on the manifold (geodesic

distance).

We consider two points z1 and z2 in the latent space, which are fed to the gen-

erator to obtain G(z1) and G(z2), respectively. We have the following result, which re-

lates the the Euclidean distance ‖z1−z2‖2 to the geodesic distance distM (G(z1),G(z2)),

which is the shortest distance on the manifold. The setting is illustrated in Fig. 4.2,

where the geodesic distance is indicated by the red curve.

Proposition 23. Let z1, z2 ∈ Rn be two nearby points in the latent space, with
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mappings denoted by G(z1),G(z2) ∈ M. Here, M = {G(z)|z ∈ Rn}. Then, the

geodesic distance on the manifold satisfies:

distM
(
G(z1),G(z2)

)
≤ ‖z1 − z2‖F ‖Jz

(
G (z1)

)
‖F . (4.8)

Proof. The straight-line between the latent vectors is denoted by c(s), s ∈ [0, 1] with

c(0) = z1 and c(1) = z2. We also assume that the line is described in its curvilinear

abscissa, which implies ‖c′(s)‖ = 1;∀s ∈ [0, 1]. We note that G may map to the black

curve, which may be longer than the geodesic distance. We now compute the length

of the black curve G[c(s)] as

d =

∫ 1

0

‖∇sG [c(s)] ‖ds. (4.9)

Using the chain rule and denoting the Jacobian matrix of G by Jz, we can simplify

the above distance as

d =

∫ 1

0

‖Jz (G) c′(s)‖Fds

≤
∫ 1

0

‖Jz (G) ‖F ‖c′(s)‖F︸ ︷︷ ︸
1

ds

= ‖Jz (G[z1]) ‖F
∫ 1

0

ds︸ ︷︷ ︸
‖z1−z2‖

. (4.10)

We used the Cauchy-Schwartz inequality in the second step and in the last step,

we use the fact that JzG (c(t)) = JzG (z1) + O(t) when the points z1 and z2 are

close. Since the geodesic distance is the shortest distance on the manifold, we have

distM
(
G(z1),G(z2)

)
≤ d and hence we obtain (4.8).

The result in (4.8) shows that the Frobenius norm of the Jacobian matrix

‖JzG‖ controls how far apart G maps two vectors that are close in the latent space.
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We would like points that are close in the latent space map to nearby points on the

manifold. We hence use the gradient of the map:

Rdistance = ‖Jz
(
G(z)

)
‖2
F (4.11)

as a regularization penalty. We note that the above penalty will also encourage the

learning of a mapping G such that the length of curve G(c(t)) is the geodesic distance.

We note that the above penalty can also be thought of as a network regularization.

Similar gradient penalties are used in machine learning to improve generalization

ability and to improve the robustness to adversarial attacks [133]. The use of gradient

penalty is observed to be qualitatively equivalent to penalizing the norm of the weights

of the network.

z1
z2

!(z1)

!(z2)

Geodesic distance

c(t)

! (c(t))

Figure 4.2. Illustration of the distance penalty. The length of the curve connecting
the images corresponding to z1 and z2 depends on the Frobenius norm of the Jacobian
of the mapping G as well as the Euclidean distance ‖z1 − z2‖2. We are interested
in learning a mapping that preserves distances; we would like nearby points in the
latent space to map to similar images. We hence use the norm of the Jacobian as the
regularization prior, with the goal of preserving distances.
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4.3.3 Latent vector regularization penalty

The time frames in a dynamic time series have extensive redundancy between

adjacent frames, which is usually capitalized by temporal gradient regularization. Di-

rectly penalizing the temporal gradient norm of the images requires the computation

of the entire image time series, which is difficult when the entire image time series is

not optimized in every batch.

We consider the norm of the finite differences between images specified by

‖∇pG[zp]‖2. Using Taylor series expansion, we obtain∇pG[zp] = Jz(G[z])∇pz+O(p).

We thus have

‖∇pG[zp]‖ ≈ ‖Jz(G[z])∇pz‖ ≤ ‖Jz(G[z])‖ ‖∇pz‖. (4.12)

Since Jz(G[z]) is small because of the distance regularization, we propose to add a tem-

poral regularizer on the latent vectors. For example, when applied to free-breathing

cardiac MRI, we expect the latent vectors to capture the two main contributors of mo-

tion: cardiac motion and respiratory motion. The temporal regularization encourages

the cardiac and respiratory phases change slowly in time.

4.3.4 Proposed optimization criterion

Based on the above analysis, we derive the parameters of the network θ and the

low-dimensional latent vectors zi; i = 1, ..,M from the measured data by minimizing:

C(z, θ) =
N∑
i=1

‖Ai (Gθ[zi])− b‖2

︸ ︷︷ ︸
data term

+λ1 ‖JzGθ(z)‖2︸ ︷︷ ︸
distance regularization

+λ2 ‖∇tzt‖2︸ ︷︷ ︸
latent regularization

(4.13)
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with respect to z and θ. We use the ADAM optimization to determine the optimal

parameters, and random initialization is used for the network parameters and latent

variables.

A potential challenge with directly solving (4.13) is its high computational

complexity. Unlike supervised neural network approaches that offer fast inference,

the proposed approach optimizes the network parameters based on the measured

data. This strategy will amount to a long reconstruction time when there are several

image frames in the time series.

4.3.5 Strategies to reduce computational complexity

To minimize the computational complexity, we now introduce some approxi-

mation strategies.

4.3.5.1 Approximate data term for accelerated convergence

When the data is measured using non-Cartesian sampling schemes, M non-

uniform fast Fourier transform (NUFFT) evaluations are needed for the evaluation of

the data term, where M is the number of frames in the dataset. Similarly, M inverse

non-uniform fast Fourier transform (INUFFT) evaluations are needed for each back-

propagation step. These NUFFT evaluations are computationally expensive, resulting

in slow algorithms. In addition, most non-Cartesian imaging schemes over-sample the

center of k-space. Since the least-square loss function in (4.5) weights errors in the

center of k-space higher than in outer k-space regions, it is associated with slow

convergence.

To speed up the intermediate computations, we propose to use gridding with
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density compensation, together with a projection step for the initial iterations. Specif-

ically, we will use the approximate data term

D(z, θ) =
M∑
i=1

‖Pi (Gθ[zi])− gi‖2 (4.14)

instead of
∑

i ‖Ai (G[zi]) − bi‖2 in early iterations to speed up the computations.

Here, gi are the gridding reconstructions

gi =
(
AHi Ai

)†AHi bi ≈ AHi W b, (4.15)

where, W are diagonal matrices corresponding to multiplication by density compen-

sation factors. The operators Pi in (4.14) are projection operators:

Pi x =
(
AHi Ai

)† (AHi Ai) x ≈
(
AHi W Ai

)
x (4.16)

We note that the term
(
AHi W Ai

)
x can be efficiently computed using Toeplitz

embedding, which eliminates the need for expensive NUFFT and INUFFT steps. In

addition, the use of the density compensation serves as a preconditioner, resulting in

faster convergence. Once the algorithm has approximately converged, we switch the

loss term back to (4.5) since it is optimal in a maximum likelihood perspective.

4.3.5.2 Progressive training-in-time

To further speed up the algorithm, we introduce a progressive training strategy,

which is similar to multi-resolution strategies used in image processing. In particular,

we start with a single frame obtained by pooling the measured data from all the time

frames. Since this average frame is well-sampled, the algorithm promptly converges

to the optimal solution. The corresponding network serves as a good initialization
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for the next step. Following convergence, we increase the number of frames. The

optimal θ parameters from the previous step are used to initialize the generator,

while the latent vector is initialized by the interpolated version of the latent vector

at the previous step. This process is repeated until the desired number of frames is

reached.

Figure 4.3. Illustration of the progressive training-in-time approach. In the first level
of training, the k-space data of all the frames are binned into one and we try to
solve for the average image in this level. Upon the convergence of the first step, the
parameters and latent variables are transferred as the initialization of the second step.
In the second level of training, we divide the k-space data into M groups and try to
reconstruct the M average images. Following the convergence, we can move to the
final level of training, where the parameters obtained in the second step and the linear
interpolation of the latent vectors in the second step are chosen as the initializations
of the final step of training.

This progressive training-in-time approach significantly reduces the compu-

tational complexity of the proposed algorithm. In this work, we used a three-step

algorithm. However, the number of steps (levels) of training can be chosen based on

the dataset. This progressive training-in-time approach is illustrated in Fig. 4.3.
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4.4 Implementation details and datasets

4.4.1 Structure of the generator

The structure of the generator used in this work is given in Table. 4.1. The

output images have two channels, which correspond to the real and imaginary parts

of the MR images. Note that we have a parameter d in the network. This user-

defined parameter controls the size of the generator or, in other words, the number of

trainable parameters in the generator. We also have a number `(z) as a user-defined

parameter. This parameter represents the number of elements in each latent vector.

In this work, it is chosen as `(z) = 2 as we have two motion patterns in cardiac

images. We use leaky ReLU for all the non-linear activations, except at the output

layer, where it is tanh activation.

Input size filter sz # filters Padding Stride Output size

1× 1× `(z) 1× 1 100 0 1 1× 1× 100

1× 1× 100 3× 3 8d 0 1 3× 3× 8d

3× 3× 8d 3× 3 8d 0 1 5× 5× 8d

5× 5× 8d 4× 4 4d 1 2 10× 10× 4d

10× 10× 4d 4× 4 4d 1 2 20× 20× 4d

20× 20× 4d 3× 3 4d 0 2 41× 41× 4d

41× 41× 4d 5× 5 2d 1 2 85× 85× 2d

85× 85× 2d 4× 4 d 1 2 170× 170× d

170× 170× d 4× 4 d 1 2 340× 340× d

340× 340× d 3× 3 2 1 2 340× 340× 2

Table 4.1. Architecture of the generator Gθ. `(z) means the number of elements in
each latent vector.
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4.4.2 Datasets

This research study was conducted using data acquired from human subjects.

The Institutional Review Board at the local institution (The University of Iowa)

approved the acquisition of the data, and written consents were obtained from all

subjects. The experiments reported in this chapter are based on datasets collected

in the free-breathing mode using the golden angle spiral trajectory.We acquired eight

datasets on a GE 3T scanner. One dataset was used to identify the optimal hyper-

parameters of all the algorithms in the proposed scheme. We then used the hyperpa-

rameters to generate the experimental results for all the remaining datasets reported

in this chapter. The sequence parameters for the datasets are: TR = 8.4 ms, FOV

= 320 mm× 320 mm, flip angle = 18◦, slice thickness = 8 mm. The datasets were

acquired using a cardiac multichannel array with 34 channels. We used an automatic

algorithm to pre-select the eight best coils, that provide the best signal to noise ratio

in the region of interest. The removal of the coils with low sensitivities provided

improved reconstructions [151]. We used a PCA-based coil combination using SVD

such that the approximation error < 5%. We then estimated the coil sensitivity maps

based on these virtual channels using the method of Walsh et al. [135] and assumed

they were constant over time.

For each dataset in this research, we binned the data from six spiral interleaves

corresponding to 50 ms temporal resolution. If a Cartesian acquisition scheme with

TR = 3.5ms were used, this would correspond to ≈14 lines/frame; with a 340× 340

matrix, this corresponds roughly to an acceleration factor of 24. Moreover, each
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dataset has more than 500 frames. During reconstruction, we omit the first 20 frames

in each dataset and use the next 500 frames for SToRM reconstructions; this is then

used as the simulated ground truth for comparisons. The experiments were run on a

machine with an Intel Xeon CPU at 2.40 GHz and a Tesla P100-PCIE 16GB GPU.

4.4.3 Quality evaluation metric

In this work, the quantitative comparisons are made using the Signal-to-Error

Ratio (SER) metric (in addition to the standard Peak Signal-to-Noise Ratio (PSNR)

and the Structural Similarity Index Measure (SSIM)) defined as:

SER = 20 · log10

‖xorig‖
‖xorig − xrecon‖

.

Here xorig and xrecon represent the ground truth and the reconstructed image. The

unit for SER is decibel (dB).

The SER metric requires a reference image, which is chosen as the SToRM

reconstruction with 500 frames. However, we note that this reference may be im-

perfect and may suffer from blurring and related artifacts. Hence, we consider the

Blind/referenceless Image Spatial Quality Evaluator (BRISQUE) [74] to evaluate the

score of the image quality. The BRISQUE score is a perceptual score based on the

support vector regression model trained on an image database with corresponding

differential mean opinion score values. The training image dataset contains images

with different distortions. A smaller score indicates better perceptual quality.
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4.4.4 State-of-the-art methods for comparison

We compare the proposed scheme with the recent state-of-the-art methods for

free-breathing and ungated cardiac MRI. We note that while there are many deep

learning algorithms for static MRI, those methods are not readily applicable to our

setting.

• Analysis SToRM [5,100], published in 2020: The manifold Laplacian matrix is

estimated from k-space navigators using kernel low-rank regularization, followed

by solving for the images using (4.4).

• Time-DIP [54] implementation based on the arXiv form at the submission of this

article: This is an unsupervised learning scheme, that fixes the latent variables

as noise and solves for the generator parameters. For real-time applications,

Time-DIP chooses a preset period, and the noise vectors of the frames corre-

sponding to the multiples of the period were chosen as independent Gaussian

variables [54]. The latent variables of the intermediate frames were obtained

using linear interpolation. We chose a period of 20 frames, which roughly cor-

responds to the period of the heart beats.

• Low-rank [66]: The image frames in the time series are recovered using the

nuclear norm minimization.

4.4.5 Hyperparameter tuning

We used one of the acquired datasets to identify the hyperparameters of the

proposed scheme. Since we do not have access to the fully-sampled dataset, we used



116

the SToRM reconstructions from 500 images (acquisition time of 25 seconds) as a

reference. The smoothness parameter λ of this method was manually selected as

λ = 0.01 to obtain the best recovery, as in the literature [5]. All of the compar-

isons relied on image recovery from 150 frames (acquisition time of 7.5 seconds). The

hyperparameter tuning approach yielded the parameters d = 40, λ1 = 0.0005, and

λ2 = 2 for the proposed approach. We demonstrate the impact of tuning d in Fig.

4.6, while the impact of choosing λ1 and λ2 is shown in Fig. 4.4. The hyperparameter

optimization of SToRM from 150 frames resulted in the optimal smoothness param-

eter λ = 0.0075. For Time-DIP, we follow the design of the network shown by Jin et

al. [54], where the generator consists of multiple layers of convolution and upsampling

operations. To ensure fair comparison, we used a similar architecture, where the base

size of the network was tuned to obtain the best results.

We use a three-step progressive training strategy. In the first step, the learning

rate for the network is 1 × 10−3 and 1000 epoches are used. For the second step of

training, the learning rate for the network is 5 × 10−4 and the learning rate for the

latent variable is 5 × 10−3. In this stage, 600 epoches are used. In the final step of

training, the learning rate for the network is 5× 10−4, the learning rate for the latent

variable is 1× 10−3, and 700 epoches are used.

4.5 Experiments and results

4.5.1 Impact of different regularization terms

We first study the impact of the two regularization terms in (4.13). The param-

eter d corresponding to the size of the network (see Table 4.1) was chosen as d = 24
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in this case. In Fig. 4.4 (a), we plot the reconstruction performance with respect to

the number of epoches for three scenarios: (1) using both regularization terms; (2)

using only latent regularization; and (3) using only distance/network regularization.

In the experiment, we use 500 frames of SToRM (∼ 25 seconds of acquisition) re-

constructions, which is called “SToRM500”, as the reference for SER computations.

We tested the reconstruction performance for the three scenarios using 150 frames,

which corresponds to around 7.5 seconds of acquisition. From the plot, we observe

that without using the network regularization, the SER degrades with increasing

epoches, which is similar to that of DIP. In this case, an early stopping strategy is

needed to obtain good recovery. The latent vectors corresponding to this setting are

shown in (c), which shows mixing between cardiac and respiratory waveforms. When

latent regularization is not used, we observe that the SER plot is roughly flat, but

the latent variables show quite significant mixing, which translates to blurred recon-

structions. By contrast, when both network and latent regularizations are used, the

algorithm converges to a better solution. We also note that the latent variables are

well decoupled; the blue curve captures the respiratory motion, while the orange one

captures the cardiac motion. We also observe that the reconstructions agree well with

the SToRM reconstructions. The network now learns meaningful mappings, which

translate to improved reconstructions when compared to the reconstructions obtained

without using the regularizers.
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4.5.2 Benefit of progressive training-in-time approach

In Fig. 4.5, we demonstrate the significant reduction in run-time offered by the

progressive training strategy described in Section 4.3.5.2. Here, we consider the recov-

ery from 150 frames with and without the progressive strategy. Both regularization

priors were used in this strategy, and d was chosen as 24. We plot the reconstruction

performance, measured by the SER with respect to the running time. The SER plots

show that the proposed scheme converges in around ≈ 200 seconds, while the direct

approach takes more than 2000 seconds. We also note from the SER plots that the

solution obtained using progressive training is superior to the one without progressive

training.

4.5.3 Impact of size of the network

The architecture of the generator Gθ is given in Table 4.1. Note that the

size of the network is controlled by the user-defined parameter d, which dictates the

number of convolution filters and hence the number of trainable parameters in the

network. In this section, we investigate the impact of the user-defined parameter d

on the reconstruction performance. We tested the reconstruction performance using

d = 8, 16, 24, 32, 40, and 48, and the obtained results are shown in Fig. 4.6. From

the figure, we see that when d = 8 or d = 16, the generator network is too small

to capture the dynamic variations. When d = 8, the generator is unable to capture

both cardiac motion and respiratory motion. When d = 16, part of the respiratory

motion is recovered, while the cardiac motion is still lost. The best SER scores with

respect to SToRM with 500 frames is obtained for d = 24, while the lowest Brisque
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scores are obtained for d = 40. We also observe that the features including papillary

muscles and myocardium in the d = 40 results appear sharper than those of SToRM

with 500 frames, even though the proposed reconstructions were only performed from

150 frames. We use d = 40 for the subsequent comparisons in the chapter.

4.5.4 Comparison with the state-of-the-art methods

In this section, we compare our proposed scheme with several state-of-the-art

methods for the reconstruction of dynamic images.

Methods SToRM500 SToRM150 Propsed Time-DIP

SER (dB) NA 17.3 18.2 16.7

PSNR (dB) NA 32.7 33.5 32.0

SSIM NA 0.86 0.89 0.87

Brisque 35.2 40.2 37.1 42.9

Time (min) 47 13 17 57

Table 4.2. Quantitative comparisons based on six datasets: We used six datasets to
obtain the average SER, PSNR, SSIM, Brisque score, and time used for reconstruc-
tion.

In Fig. 4.7, we compare the region of interest for SToRM500, SToRM with

150 frames (SToRM150), the proposed method with two different d values, the unsu-

pervised Time-DIP approach, and the low-rank algorithm. From Fig. 4.7, we observe

that the proposed scheme can significantly reduce errors in comparison to SToRM150.

Additionally, the proposed scheme is able to capture the motion patterns better than

Time-DIP, while the low-rank method is unable to capture the motion patterns. From

the time profile in Fig. 4.7, we notice that the proposed scheme is capable of recov-
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ering the abrupt change in blood-pool contrast between diastole and systole. This is

due to inflow effects associated with gradient echo (GRE) acquisitions. In particular,

the blood from regions outside the slice enters the heart, which did not experience

any of the former slice-selective excitation pulses; the differences in magnetization of

the blood with no magnetization history, and that was within the slice, results in the

abrupt change in intensity. We note that some of the competing methods such as

Time-DIP and low-rank, blur these details.

We also perform the comparisons on a different dataset in Fig. 4.8. We

compare the proposed scheme with SToRM500, SToRM150, Time-DIP, and the low-

rank approach. The results are shown in Fig. 4.8. From the figure, we see that the

proposed reconstructions appear less blurred than those of the conventional schemes.

We also compared the proposed scheme with SToRM500, SToRM150, and the

unsupervised Time-DIP approach quantitatively. We omit the low-rank method here

because low-rank approach often failed in some datasets. The quantitative compar-

isons are shown in Table 4.2. We used SToRM500 as the reference for SER, PSNR,

and SSIM calculations. The quantitative results are based on the average performance

from six datasets.

Finally, we illustrate the proposed approaches in Fig. 4.9 and Fig. 4.10,

respectively. The proposed approach decoupled the latent vectors corresponding to

the cardiac and respiratory phases well, as shown in the representative examples in

Fig. 4.9 (a) and Fig. 4.10 (a).
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4.6 Conclusion

In this work, we introduced an unsupervised generative SToRM framework

for the recovery of free-breathing cardiac images from spiral acquisitions. This work

assumes that the images are generated by a non-linear CNN-based generator Gθ,

which maps the low-dimensional latent variables to high-resolution images. Unlike

traditional supervised CNN methods, the proposed approach does not require any

training data. The parameters of the generator and the latent variables are directly

estimated from the undersampled data. The key benefit for this generative model

is its ability to compress the data, which results in a memory-effective algorithm.

To improve the performance, we introduced a network/distance regularization and a

latent variable regularization. The combination of the priors ensures the learning of

representations that preserve distances and ensure the temporal smoothness of the

recovered images; the regularized approach provides improved reconstructions while

minimizing the need for early stopping. To reduce the computational complexity, we

introduced a fast approximation of the data loss term as well as a progressive training-

in-time strategy. These approximations result in an algorithm with computational

complexity comparable to our prior SToRM algorithm. The main benefits of this

scheme are the improved performance and considerably reduced memory demand.

While our main focus in this work was to establish the benefits of this work in 2D,

we plan to extend this work to 3D applications in the future.



122

(a) Performance comparison (b) Latent codes with both terms

(c) Without distance regularization (d) Without latent regularization

(e) Visual and quantitative comparisons

Figure 4.4. Illustration of the impact of the regularization terms in the proposed
scheme with d = 24. We considered three cases in the experiment: (1) using both
regularizations, (2) using only latent regularization, and (3) using only network reg-
ularization; these correspond to the blue, orange, and yellow curves in (a). In (b),
(c), and (d), we showed the learned latent vectors for the three cases. The visual and
quantitative comparisons of the three cases are shown in (e).
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Figure 4.5. Comparisons of the reconstruction performance with and without the
progressive training-in-time strategy using d = 40. From the plot of SER vs. running
time, we can see that the progressive training-in-time approach yields better results
with much less running time comparing to the training without using progressive
training-in-time. Two reconstructed frames near the end of systole and diastole using
SToRM500, the proposed scheme with progressive training-in-time and the proposed
scheme without using the progressive training-in-time are shown in the plot as well for
comparison purposes. The average Brisque scores for SToRM500, the reconstruction
with progressive training-in-time, and the reconstruction without progressive training-
in-time are 36.4, 37.3 and 39.1 respectively.
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Figure 4.6. Impact of network size on reconstruction performance. In the experiments,
we chose d = 8, 16, 24, 32, 40 and 48 to investigate the reconstruction performance.
We used 500 frames for SToRM reconstructions (SToRM500) as the reference for SER
comparisons. For the investigation of the impact of network size on the reconstruc-
tions, we used 150 frames. The diastolic and systolic states and the temporal profiles
are shown in the figure for each case. The Brisque scores and average SER are also
reported. It is worth noting that when d = 40, the results are even less blurred than
the SToRM500 results, even though only one-third of the data are used.
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(a) Visual comparisons (b) Time profiles

Figure 4.7. Comparisons with the state-of-the-art methods. The first column of (a)
corresponds to the reconstructions from 500 frames (∼ 25s of acquisition time), while
the rest of the columns are recovered from 150 frames (∼ 7.5s of acquisition time).
The top row of (a) corresponds to the diastole phase, while the third row is the
diastole phase. The second row of (a) is an intermediate one. Fig. (b) corresponds
to the time profiles of the reconstructions. We observe that the proposed (d = 40)
reconstructions exhibit less blurring and fewer artifacts when compared to SToRM150
and competing methods.

(a) Visual comparisons (b) Time profiles

Figure 4.8. Comparisons with the state-of-the-art methods. The first column of (a)
corresponds to the reconstructions from 500 frames (∼ 25s of acquisition time), while
the rest of the columns are recovered from 150 frames (∼ 7.5s of acquisition time).
The top row of (a) corresponds to the diastole phase, while the third row is the
diastole phase. The second row of (a) is an intermediate one. Fig. (b) corresponds
to the time profiles of the reconstructions. We chose d = 40 for the proposed scheme.
We observe that the proposed reconstructions appear less blurred when compared to
the conventional schemes.



126

(a) Latent vectors (b) Systole
in E-E

(c) Systole
in E-I

(d) Di-
astole in
E-E

(e) Diastole
in E-I

Figure 4.9. Illustration of the framework of the proposed scheme with d = 40. We
plot the latent variables of 150 frames in a time series on the first dataset. We
showed four different phases in the time series: systole in End-Expiration (E-E),
systole in End-Inspiration (E-I), diastole in End-Expiration (E-E), and diastole in
End-Inspiration (E-I). A thin green line surrounds the liver in the image frame to
indicate the respiratory phase. The latent vectors corresponding to the four different
phases are indicated in the plot of the latent vectors.

(a) Latent vectors (b) Systole
in E-E

(c) Systole
in E-I

(d) Di-
astole in
E-E

(e) Diastole
in E-I

Figure 4.10. Illustration of the framework of the proposed scheme with d = 40. We
plot the latent variables of 150 frames in a time series. We showed four different
phases in the time series: systole in End-Expiration (E-E), systole in End-Inspiration
(E-I), diastole in End-Expiration (E-E), and diastole in End-Inspiration (E-I). The
latent vectors corresponding to the four different phases are indicated in the plot of
the latent vectors.
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CHAPTER 5

ALIGNED & JOINTLY RECOVERY OF MULTI-SLICE DATA USING
UNION OF SURFACES PRIOR

5.1 Introduction

Breath-held cine imaging, which provides valuable indicators of abnormal

structure and function, is an integral part of cardiac MRI exams. Multi-slice pro-

tocols, which offer good in-flow contrast between the myocardium and the blood, are

often preferred over 3D acquisitions. A challenge with multi-slice approaches is the

potential for mismatches between slices resulting from inconsistent breath-holds. An-

other challenge is the difficulty in acquiring data from subjects who cannot comply

with multiple long breath-holds. Compressed sensing methods have been widely used

to reduce the breath-hold duration [8, 57, 60, 69]. Recently, deep learning methods

have emerged as powerful options to accelerate cardiac cine MRI, with excellent per-

formance [20, 61, 104, 112, 141]. Despite these advances, several subject groups, such

as pediatric and chronic obstructive pulmonary disease (COPD) subjects, cannot

comply with breath-held acquisitions.

Several authors have introduced self-gating and manifold methods for free-

breathing and ungated imaging applications. Self-gating methods [24, 32, 40, 41, 108,

152] use k-space navigators to estimate the cardiac/respiratory phase, followed by

the binning and recovery of binned images. Manifold approaches [22,80,81,118,132],

including the smoothness regularization on manifolds (SToRM) approach [5,97,100],

which perform soft-gating based on k-space navigators, are emerging as alternatives
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to self-gating. All of the above schemes perform the independent recovery of multi-

slice data; they fail to capitalize on the extensive redundancies between nearby slices.

Moreover, current manifold approaches, which recover all the image frames in the time

series, are associated with high memory demand. In addition, sophisticated post-

processing approaches are often needed to temporally align the data from different

slices [5, 22].

In this note, we introduce a deep generative model for the joint reconstruc-

tion of multi-slice MRI, termed as generative multi-slice SToRM (g-SToRM:MS).

This is the multi-slice generalization of the recent generative single-slice SToRM (g-

SToRM:SS) framework [154] that has conceptual similarities with time dependent

deep image prior [56]. The g-SToRM:SS algorithm models the images in the time-

series from each slice as a smooth, non-linear function of a low-dimensional latent

vector. The patient-specific non-linear function is represented as a convolutional neu-

ral network (CNN), which is the same for all the time frames. By contrast, the latent

vectors capture the temporal variability in the data, including cardiac and respira-

tory motion. This approach exploits the structural bias of CNN to images to offer

implicit regularization [63], thus improving the results compared to classical analysis

single-slice SToRM (a-SToRM:SS) [5, 100]. Unlike current CNN-based approaches,

g-SToRM:SS does not require the fully sampled training data, which is not available

in the free-breathing setting. The patient-specific CNN parameters and the latent

vectors are learned from only the highly under-sampled k-t space measurements of

the subject. Moreover, unlike prior methods [5, 24, 80, 81, 97, 100, 118], g-SToRM:SS
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does not require k-space navigators to estimate the motion patterns.

The g-SToRM:SS [154] and a-SToRM:SS [5] algorithms, as well as current

single-slice methods [24,80,81,97,100,118], perform the independent reconstruction of

the slices. These approaches are not capable of exploiting the redundancies between

adjacent slices. To exploit the extensive redundancies between adjacent slices, we

propose to use a 3D generator to model the volume corresponding to all the slices

at each time point. We use a 2D spiral gradient echo sequence (GRE) to acquire

the data from each slice. We use the same 3D generator for all the time frames

and slices. We propose to use different latent vectors for each slice to account for

the differences between cardiac and respiratory motion during the acquisition of the

different slices. The latent vectors for each slice/time as well as the CNN parameters

are jointly learned from the measured data of all the slices. Once the learning is

complete, the generator can be excited with the latent vector of any slice to generate

an aligned multi-slice volume when it generates the aligned multi-slice data with

matching cardiac/respiratory phases. In addition to enabling the exploitation of the

inter-slice redundancies, this approach also simplifies the image processing workflow

and subsequent processing. The proposed scheme is illustrated in Fig. 5.1.
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Figure 5.1. Illustration of the proposed scheme on a dataset with three slices. The latent
vectors of the ith slice and time instant t, denoted by zi,t, are fed into the deep generative
model Gθ, which generates the multi-slice image volume ρi,t = Gθ[zi,t]. The latent vectors
zi,t and the parameters θ of the generative model are learned jointly from the entire k-t
space data bi,t, ∀i, t. The data consistency term in (5.3) specified by

∑
i

∑
t ‖Ait(ρi,t)−bi,t‖2

is the sum of the errors between the measured k-t space data of each slice and the multi-
channel measurements of the corresponding slices. For example, the operator Ait extracts
the ith slice from ρi,t and evaluates its multi-channel Fourier transform, which is compared
with the measurements bi,t. We additionally use regularization priors on the network and
the latent parameters to make the reconstruction problem well posed.

The g-SToRM:MS framework uses the mean square error loss function

M∑
i=1

N∑
t=1

‖Ait (Gθ[zi,t])− bi,t‖2

for image recovery (see Fig. 5.1). In particular, we feed the latent vectors zi,t corre-

sponding to the ith slice and the tth time frame to the generator Gθ, which outputs

the corresponding 3D volume ρi,t = Gθ[zi,t]. The forward model Ai,t extracts the ith

slice of ρi,t and computes the multi-channel non-uniform Fourier transform, which is

compared with the k-space data of the ith slice and the tth time frame. The CNN
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parameters θ and the latent variables are obtained by minimizing the above cost func-

tion using ADAM [58]. We note that the norm of the gradient of the CNN, denoted

by ||∇zG||2F , is a measure of the smoothness of the recovered images on the image

manifold [154]; we add the above penalty to regularize the learning as in [154]. In

addition, as we expect the image frames in the time series to vary smoothly in time,

we also use a regularization term to penalize the temporal smoothness of the latent

vectors as in [154]. We note that the latent vectors suffer from non-uniqueness; for

every set of latent vectors and network combinations, one could come up with several

other combinations. For instance, one could scale the latent vector with an arbitrary

invertible matrix, while the fully connected weights of the first layer of the network

can undo this scaling. This non-uniqueness is not a big concern in the single-slice set-

ting [154]. In the multi-slice setting, this non-uniqueness can result in image quality

degradation when one is using the latent vectors of one slice to generate the entire vol-

ume. Specifically, the probability distribution of the latent vectors of one slice could

be drastically different from that of other slices. To minimize these issues, we use an

additional Kullback-Leibler (K-L) divergence [145] penalty on the latent vectors of

each slice to encourage their probability densities to be a zero mean Gaussian with the

covariance matrix as identity. The memory footprint of the algorithm is determined

by the size of the network as well as the latent vectors z, which is orders of magnitude

smaller than that of manifold approaches, which often require the recovery of each

time frame in the time series.
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5.2 Methods

5.2.1 Forward model

We consider the recovery of the 3D time-series ρi,t(r), where r = (x, y, z)

represents the spatial coordinates and t denotes the time from the multi-slice data.

Here, z is the slice location. We model the multi-slice acquisition of the data as

bi,t = Ait
(
ρi,t(r)

)
+ ni,t, (5.1)

where Ait extracts the ith slice of the volume ρ(r) at time point t and evaluates the

multi-channel Fourier measurements on the trajectory ki,t corresponding to the time

point t. ni,t represents the noise. The main problem we consider is to recover the

volume time series ρ(r) from the noisy under-sampled measurements bi,t.

5.2.2 Proposed approach

In this work, we model the image volume at the time point t during the

acquisition of the ith slice, denoted by ρi,t(r), as the non-linear mapping:

ρi,t(r) = Gθ [zi,t] (5.2)

Here, zi,t are the low dimensional latent vectors corresponding to slice i at a specific

time point t, while Gθ is a deep CNN generator whose weights are denoted by θ. Our

experiments show that 2-4 latent vectors are often sufficient to represent the data.

(5.2) indicates that the images live in the range space of the non-linear mapping Gθ,

where the domain is a low-dimensional subspace. We note that we are essentially

modeling the images in the time series as points on a surface or manifold, denoted

by M. Thus, we term (5.2) as the generative SToRM model. The low-dimensional
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nature of the latent vectors enables the exploitation of the non-local redundancies

between images at different time points, thus facilitating the fusion of information

between them as in [5, 100]. We note that the network is shared across all slices

and time points; this approach facilitates the exploitation of the spatial redundancies

between the slices and time points, in addition to being memory efficient. Moreover,

CNNs often have a structural bias towards natural images [63], which offers implicit

spatial regularization.

We propose to jointly estimate the network parameters θ and the latent vari-

ables z of different slices from the measured multi-slice data by minimizing the fol-

lowing cost function:

C(z, θ) =
M∑
i=1

N∑
t=1

‖Ait (Gθ[zi,t])− bi,t‖2 + λ1 ‖∇zGθ‖2︸ ︷︷ ︸
network regularization

+λ2 R(z)︸ ︷︷ ︸
latent regularization

.

(5.3)

As shown in [154], the smoothness of the image manifold is dependent upon the

norm of the gradient of the CNN Gθ. Motivated by the improvement in performance

resulting from the use of the manifold smoothness penalty in [154], we propose to use

this term to regularize the multi-slice setting as well.

The last term in (5.3) is a regularization penalty on the latent vectors to

further constrain the solution. We use a combination of the smoothness penalty and

the K-L divergence penalty as latent vector priors:

R(z) = λ21 · ||∇tz||+ λ22 ·KL
[
q(z)|N (0, I))

]
. (5.4)

The first term ||∇tz|| is a temporal smoothness penalty on the latent vectors. The
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image frames are known to change slowly in time. If the gradient of the CNN Gθ is

finite, distances between close-by points on the image manifoldM are closely related

to the distances between the latent vectors. Since the evaluation of the temporal

smoothness on the images is computationally and memory intensive, we propose to

directly penalize the temporal smoothness of the latent vectors. After the training

process is complete, we plan to generate the volume time series by feeding the genera-

tor with the latent variables of a particular slice. If the latent variables have different

probability distributions, this approach can result in degraded image quality for other

slices. We hence use an additional regularization term, which is the Kullback–Leibler

(KL) divergence [34] between the probability density of the latent vectors of each slice

and a Gaussian distribution with zero mean and identity covariance matrix; this is

the second term in (5.4). This penalty encourages the latent vectors for each slice

to have the same distribution while being maximally uncorrelated. In free-breathing

cardiac MRI, it is often difficult to decouple the subtle cardiac motion from the strong

respiratory motion; the low correlation between the components of the latent vari-

ables ensures that the network learns mappings between meaningful latent vectors

and images.

The parameters of the network and the latent vectors are jointly learned in

an unsupervised fashion from the measured k-t space data. We use the ADAM op-

timization algorithm for the learning. The proposed approach relies only on the

under-sampled k-t space data of the specific patient. Unlike current deep learn-

ing algorithms for image recovery, the proposed approach does not require extensive
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amounts of fully sampled training data.

5.2.3 Acquisition scheme

The multi-slice images are acquired sequentially using a 2D (GRE) sequence

with golden angle spiral readouts in the free-breathing and ungated setting. The

sequence parameters for the datasets are: FOV = 320 mm × 320 mm, flip angle

= 18◦, slice thickness = 8 mm. The datasets were acquired using a cardiac multi-

channel array with 34 channels. The institutional review board at the University

of Iowa approved the acquisition of the data, and written consents were obtained

from the subjects. We show the data acquired from two healthy volunteers and a

patient with COPD. At the time of data acquisition, the patient with COPD was at

GOLD 3 stage [2] , but was not dependent on oxygen. The datasets from the normal

volunteers were acquired on a GE MR750W scanner with a 34-channel array, while

the COPD subject was scanned after the scanner was upgraded to GE Premier with a

54-channel array. We used an algorithm developed in-house to pre-select the the coils

that provide the best signal-to-noise ratio in the region of interest. A PCA-based coil

combination scheme was used such that the approximation error was less than 5%.

We then estimated the coil sensitivity maps based on these virtual channels using

ESPIRiT [129] and assumed them to be constant over time.

For the datasets from normal volunteers, a total of 3,192 spirals were acquired

for each slice in the normal subjects with TR=8.4 ms, which corresponds to an acqui-

sition time of 27 seconds/slice, where every sixth spiral was acquired with the same

angle; these spirals were used for self-navigation in a-SToRM:SS. We binned the data
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from six spiral interleaves corresponding to 50 ms temporal resolution. The datasets

from the healthy volunteers were acquired with 8 and 5 slices, respectively. For the

COPD dataset, a total of 3,200 spirals were acquired with TR=8 ms for three slices,

which translates to an acquisition time of 25 seconds/slice. Every fifth spiral was

acquired with the same angle, which was used for self-navigation in a-SToRM:SS. We

binned five interleaves per frame, resulting in a 40 ms temporal resolution. For the

normal subjects, we use the k-space data from 150 frames for reconstruction and com-

parison, which translates to 7.5 ms/slice; we refer to the approaches as a-SToRM:150,

g-SToRM:SS, and g-SToRM:MS, respectively, in the figures. For the COPD dataset,

we use the k-space data of 150 frames in each slice, which correspond to 6 seconds of

acquisition time per slice. The analysis SToRM reconstructions using the entire data

with 500 and 600 frames for the normal subjects and COPD subjects (referred to as

a-SToRM:500 and a-SToRM:600 in the figures) are used as reference.

5.2.4 Training approach

We adopt the progressive-in-time training strategy introduced in [154] to real-

ize a computationally efficient reconstruction. In particular, we start with the recovery

of an image series with a few frames, obtained by binning more spirals per frame.

Because each image is oversampled and because the number of time frames is limited,

the generator and the latent vectors converge quickly in this setting. Once the algo-

rithm has converged, we interpolate the latent vectors to a finer temporal grid and

re-optimize the latent vectors and generator parameters with fewer spirals/bin. The

optimal generator parameters from the previous setting are used as the initialization
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in this case. In this work, we consider a three-step progression: 10 → 50 → 150.

Specifically, we start with ten images per slice (corresponding to 90 spirals/bin for

the volunteer datasets and 75 spirals/bin for the COPD dataset), followed by 50

images per slice (corresponding to 18 spirals/bin for the volunteer datasets and 15

spirals/bin for the COPD dataset), and finally 150 images per slice (corresponding

to 6 spirals/bin for the volunteer datasets and 5 spirals/bin for the COPD dataset).

Results in this work were generated using an Intel Xeon CPU at 2.40 GHz and a

Tesla V100-PCIE 32GB GPU.

5.2.5 Comparison with state-of-the-art methods

We compare the proposed multi-slice generative manifold approach with the

following existing methods.

• Analysis SToRM [5]: The a-SToRM:SS model estimates the manifold Laplacian

matrix from the k-space navigators using kernel low-rank regularization, which

is then used to solve for the images. We note that the analysis SToRM approach

yields comparable or improved performance to state-of-the-art self-gated meth-

ods.

• Single-slice generative SToRM [154]: The g-SToRM:SS approach uses a CNN

generator to generate the single-slice image series from the highly undersampled

k-t space data. It performs the independent recovery of each slice and hence

fails to exploit the inter-slice redundancies.

The quantitative comparisons are made using the signal-to-error ratio (SER)
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defined as

SER = 20 · log10

||xref ||
||xref − xrecon||

.

Here xref and xrecon represent the reference and the reconstructed images, respec-

tively. The unit for SER is decibel (dB). Because a-SToRM:600 or a-SToRM:500 are

sometimes not the perfect references, we also report the Blind Image Spatial Quality

Evaluator (BRISQUE) [74], which is a reference-less perceptual measure of image

quality; a smaller score indicates better quality.

5.3 Results

The impact of the network size, λ1 and λ2, have been studied in [154]. We

perform experiments similar to [154] to determine the best parameters on one dataset.

We observe that three latent variables are sufficient in offering good reconstructions

in all the cases considered in this work. Once the parameters have been identified,

we use the setting for the remaining datasets.

5.3.1 Impact of K-L divergence penalty

We first study the impact of the newly added K-L divergence penalty, which

is expected to play a critical role in the multi-slice setting. This is important because

we finally generate aligned multi-slice data with matching cardiac/respiratory phases

using the latent variables of a specific slice. If the latent vectors of different slices have

different probability distributions, the generator may generate image frames without

any meaning for slices that differ from the chosen one. We study the impact of the

K-L divergence penalty in Fig. 5.2 using four slices. In Fig. 5.2 (a), we showed the

multi-slice reconstructions without using the K-L divergence penalty (i.e., λ22 = 0).
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The diastole and systole phases for each slice are exhibited. At the bottom of the

figure, we show the plots of the latent vectors for each slice. From the plots of the

latent vectors in Fig. 5.2 (a)-bottom row, we see that the distribution of the latent

vectors for each slice are different. For instance, the vectors are well distributed for

slice no. 3, while they are more concentrated for slice no. 6. When the generator

is fed with the latent vectors corresponding to slice no. 3, the images of other slices

are poor, as shown in Fig. 5.2 (a)-top rows. In Fig. 5.2 (b), we show the multi-slice

reconstructions by adding the K-L divergence penalty. From the plots of the latent

vectors, we see that the latent vectors for each slice will have similar distributions.

When the generator is excited with the latent vectors of slice no. 3, the reconstructions

of all the slices have higher SER.
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(a) Reconstructions without K-L divergence penalty

(b) Reconstructions with K-L divergence penalty

Figure 5.2. Illustration of the impact of the K-L divergence penalty. We use four slices
(slices 3-6) in the first dataset from the healthy volunteer to generate the results. In (a), we
show the multi-slice reconstructions without using the K-L divergence penalty. The latent
vectors corresponding to slice 3, which is shown in the plot at the bottom of slice 3, are fed
into the generator to obtain the multi-slice reconstructions. Since the latent vectors in this
case have different distributions, the reconstructions of slices 4, 5, and 6 are of bad image
quality. In (b), we show the multi-slice reconstructions using the K-L divergence penalty.
We feed the latent vectors corresponding to slice 3 into the generator. From the plots of
the latent vectors, which are shown at the bottom of Fig. (b), we can see that the latent
vectors of each slice have the same distribution, hence resulting in good reconstruction.
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5.3.2 Comparisons with current manifold methods

The results and comparisons for the datasets from the healthy volunteers are

shown in Fig. 5.3 and Fig. 5.4. The results show that the generative manifold

approach is able to reduce noise and alias artifacts compared to analysis SToRM.

We attribute the improved performance to spatial regularization offered by the CNN

generator, which is absent in the analysis SToRM formulation. Furthermore, we note

that, unlike the analysis scheme, the proposed approach does not use k-space nav-

igators to estimate the motion states; the latent variables are estimated from the

measured k-space data itself. In addition, we see that the multi-slice reconstruc-

tion capitalizes on the redundancy between the slices compared to the single-slice

generative SToRM reconstructions, offering improved performance and around 2dB

improvement in performance.

The results and comparisons for the COPD dataset are shown in Fig. 5.5. The

relatively irregular respiration makes this a challenging dataset to recover. From Fig.

5.5, we see that the competing methods have difficulty capturing the left ventricular

(LV) boundaries in the diastole phase. By contrast, the multi-slice reconstructions

can offer improved reconstruction and reduced blurring.
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(a) Slice no. 3 (b) Slice no. 6

(c) Latent vectors

Figure 5.3. Illustration of the framework of the proposed scheme and comparison with
existing methods. The experiments are based on the first dataset from the healthy volunteer,
and 8 slices are used. We compare the proposed multi-slice generative manifold approach
with the analysis SToRM and single-slice generative SToRM approaches. We use the SToRM
reconstructions from the data of 500 frames (a-SToRM:500) as the reference for quantitative
comparison. For the comparisons, we use the data of 150 frames for the reconstruction.
From the reported average SER, shown at the bottom of figures (a) and (b), one can see
that the proposed multi-slice generative manifold approach offers better reconstructions
than the competing methods. We also plot the latent variables of 150 frames in time series
for the proposed method. In this experiment, we feed the latent vectors corresponding
to slice 8 to generate the multi-slice reconstruction. We showed four different phases for
two different slices that are reconstructed in the time series: systole in end-expiration (E-
E), systole in end-inspiration (E-I), diastole in E-E and diastole in E-I. The latent vectors
corresponding to the four different phases are indicated in the plot of the latent vectors.
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(a) Slice no. 3 (b) Slice no. 4

(c) Latent vectors

Figure 5.4. Illustration of the framework of the proposed scheme and comparison with
existing methods. The experiments are based on the second dataset from the healthy
volunteer, and 5 slices are used. We compare the proposed multi-slice generative manifold
approach with the analysis SToRM and single-slice generative SToRM approaches. We use
the SToRM reconstructions from the data of 500 frames (a-SToRM:500) as the reference
for quantitative comparison. For the comparisons, we use the data of 150 frames for the
reconstruction. From the reported average SER, shown at the bottom of figures (a) and
(b), one can see that the proposed multi-slice generative manifold approach offers better
reconstructions than the competing methods. We also plot the latent variables of 150 frames
in time series for the proposed method. The first three slices in this dataset have the liver
appearing in the field of view, but it never appears in the last two slices. Therefore, it is
hard to determine the respiratory phases for the last two slices. In this experiment, we
feed the latent vectors corresponding to slice 2 to generate the multi-slice reconstruction.
We showed four different phases for slice 3 that are reconstructed in the time series and
two phases for slice 4. The latent vectors corresponding to the four different phases are
indicated in the plot of the latent vectors.



144

(a) Slice no. 2 (b) Slice no. 3

(c) Latent vectors

Figure 5.5. Illustration of the framework of the proposed scheme and comparison with
existing methods. The experiments are based on the COPD dataset. We compared the
proposed multi-slice generative manifold approach with the analysis SToRM and single-
slice generative SToRM approaches. For the comparisons, we use the data of 150 frames for
the reconstruction. We also compare the results with the analysis SToRM reconstructions
from the data of 600 frames (a-SToRM:600). The BRISQUE score is used for quantitative
comparison. The numbers at the bottom of figures (a) and (b) are the average BRISQUE
scores. From the reported BRISQUE scores, one can see that the proposed multi-slice
generative manifold approach offers better perceptual image quality than the competing
methods. We also plot the latent variables of 150 frames in time series for the proposed
method. In this experiment, we feed the latent vectors corresponding to slice 2 to generate
the multi-slice reconstruction. We showed three different phases for two different slices
that are reconstructed in the time series: diastole (first row), systole (third row), and
intermediate phase (second row). The latent vectors corresponding to the three different
phases are indicated in the plot of the latent vectors.
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5.4 Discussion & Conclusions

In this note, we introduce a generative manifold representation for the align-

ment and joint recovery of multi-slice dynamic MRI from highly undersampled mea-

surements. The deep CNN generator, which maps low-dimensional latent variables

to a smooth image manifold, is used to represent and recover the images from highly

undersampled data. The key benefit of this approach over current deep learning

methods is that it does not require fully sampled training data, which is difficult to

acquire in the free-breathing setting. Unlike current manifold approaches that per-

form the independent recovery of the slices, the proposed approach jointly recovers

the images from the undersampled k-t space data of all the slices, thus exploiting the

inter-slice redundancies.

Our results show that the the joint recovery of the slices offers reduced blur-

ring and reduction of artifacts compared to g-SToRM:SS. Similarly, the use of the

CNN generator offers implicit spatial regularization, resulting in improved recovery

over a-SToRM:SS. The g-SToRM:MS framework is able to provide results that are

comparable to the classical a-SToRM:SS approach with three fold less acquisition

time.
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CHAPTER 6

SUMMARY

In this thesis, we consider the novel union of surfaces model for signal pro-

cessing. We first build the foundation of the union of surfaces model, including the

mathematical background of the union of surfaces model, the relation between the

union of surfaces model and the widely used union of subspaces model, and the re-

covery of union of surfaces from incomplete and noisy samples. We propose a kernel

low-rank algorithm for the recovery the union of surfaces in the first part of this

thesis.

Then we study the recovery of the functions that are living on the union of

surfaces. We show when can we exactly learn and recover a function that lives on a

surface, from few input-output examples. Based on which, we give the explanation of

the good performance of imaging algorithms that use manifold structure. In this part,

we focus on surface recovery in high-dimensional spaces with application to machine

learning and learning surfaces of patches and images. We also link the computational

structure of the proposed function learning algorithm to neural networks in the second

part of this thesis.

In the third part of this thesis, we apply the proposed union of surfaces model

to computational images. We consider the reconstruction of free-breathing and un-

gated cardiac MRI for the application. We also extend the results in the third part

of the thesis to the multi-slice MRI setting in the fourth part of this thesis.
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