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Abstract

This chapter reviews machine learned image representations for accelerated MRI. Unlike prior ap-
proaches that use fixed models for image recovery, recent methods relies on advances in machine
learning to adapt the representation to the data. The improved representation translates to quite
significant gains in acceleration. We review global low-rank representations, local low-rank methods
that approximate groups of signals by subspaces, dictionary learning methods, and smooth manifold
based approaches. All of the schemes learn the representation either from exemplar data, calibra-
tion data, or jointly learn the representation and images from undersampled data. We also review
applications of these frameworks to static and dynamic imaging applications.

1. Introduction

Efficient image representations are key to reconstructing images from fewer measurements. In
particular, low dimensional representations can represent images efficiently, enabling the robust
recovery from sparse and noisy measurements. Many of the early model-based MRI approaches
relied on fixed image representations, which were often carefully engineered to the data. In contrast,
learning the low dimensional representations from data itself offers improved efficiency. For instance,
compressed sensing methods described in Chapter 8 may be thought of as learning-based algorithms,
where the specific basis functions that are best suited to represent a given signal are chosen from
a pre-engineered dictionary. The low-rank models reviewed in chapter 9 go one step further, for
instance to make use of the redundancies of images in a time series that differ in contrasts and/or
motion states. This chapter focus on learned low dimensional representations, which are general-
izations of the low-rank methods discussed in the previous chapter. The objective is to account for
image redundancies that are challenging for low-rank methods to capture.

In this chapter, we will review the generalizations of low-rank methods, which can be be broadly
classified as

1. approaches that capitalize the complex non-linear redundancies with the datasets, which low-
rank methods are not capable of capitalizing on. Sparse dictionary learning and smooth
manifold representations fall in this category. Unlike low-rank methods that use energy based
priors on the factors, dictionary learning methods use sparsity priors on the coefficients and
energy based priors on the dictionary atoms. The smooth manifold models use non-linear
kernel priors, allowing us to account for non-linear redundancies in the data resulting from
motion and contrast changes. Please see Fig. 1 for an illustration of the representations in 3D
space.

2. approaches that use the above representations to sub-parts of the image (e.g. patches of
different shape, either in the image domain or k-space) rather than the whole image. We
will show that this approach allows one to capitalize unique signal redundancies that are
characteristic of each application (e.g. smoothly varying phase, exponential signal decay in
time, uncalibrated parallel MRI), which are often challenging for the traditional low-rank or
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a.Global subspace model b.Local subspace model c.Sparse (dictionary) model d.Smooth manifold model

Figure 1: Overview of signals extracted from the image volumes, whose redundancy is capitalized in this chapter:
The signals (images/patches/timeprofiles) in MRI datasets have extensive redundancy as described in Fig. 2; they
can be viewed as points lying on a manifold in high dimensional spaces. The redundancy of the signals are captured
by different adaptive models in different ways. Global subspace or global principal component analysis (PCA) models
reviewed in Chapter 9 model the signals as a subspace as shown in (a); they learn the basis vectors indicated by the
red arrows from the data, coming up with a compact representation of the space. Local subspace models cluster the
data and learn a subspace for each cluster/neighborhood as shown in (b). Sparse dictionary learning methods learn
the dictionary basis functions from the data itself; the signal space is modeled by a union of subspaces, where basis
functions may be shared by local neighborhoods as shown in (c). The main benefit over local PCA approaches is
that this approach does not need an explicit clustering step. Smooth manifold and kernel PCA models represent the
signals as a smooth manifold; as shown in (d), they rely on a mapping that converts the non-linear manifold to a
low-dimensional subspace denoted by the plane; the structure of the low-dimensional subspace is used to recover the
signals.

compressed sensing algorithms. Please see Fig. 2 for an illustration of the signals extracted
from the images, whose redundancies are leveraged to recover the image.

The chapter is organized as follows. Following a brief overview of the background in Section 2, we
review dictionary based methods in Section 3, where the sparsity of the dictionary coefficients is used
to further improve the adaptation of the representation to the specific signal; these approaches use
sparsity to bypass the need for clustering that is often needed in local PCA based methods reviewed
in Chapter 9. The low-rank model in Chapter 9 is then extended to patches in image domain or
k-space in Section 4. In particular, under specific assumptions, the resulting patch matrix/matrices
are highly low-rank, which can be capitalized for acceleration as discussed in Section 4. We review
smooth manifold models, which are efficient in capturing non-linear redundancies in the dataset in
Section 5. An overview and broad classification of the methods reviewed in this chapter is given in
Table 1. In this chapter, the different topics are not presented in the chronological order in which
they were introduced in the MRI setting. Rather, our focus is on grouping the different methods into
broader themes to facilitate easy comprehension of the links and the generalizations of the various
approaches.

2. Background

2.1. Acquisition scheme

As introduced in Chapter 2, the main goal of image recovery is the estimation of the continuous
domain function x : Rn → C from a finite number of multichannel k-space measurements si,j , based
on the relation:

si,j =

∫
x(r)cj(r) exp(−jkTi r)dr + ηi,j (1)

Here, cj(r) are the sensitivity profiles of the jth coil and ki is the location in k-space, while η denotes
noise. The measurement process described in (1) can be compactly represented as

s = E(x), (2)
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a. Patches b. Time series:images c. Time series: voxel profiles


Figure 2: Types of signals used by different algorithms: the MR methods reviewed in this chapter account for the
redundancy within the image volumes, which often manifest as correlations between image sub-parts that we broadly
refer to as patches. Depending upon the shape of the patches, they could be cubes in 3D/4D as shown in (a), images
in a dynamic time series as shown in (b), or time profiles of pixels in a time series as shown in (c). The images in
dynamic imaging or parameter mapping have extensive non-local similarity as shown in (c). For instance, the images
in similar cardiac/respiratory phases are expected to be similar; each image in the time series may be viewed as a
mapping of the cardiac/respiratory phases, which are often accounted by self-gating methods. Likewise, the voxel
time series in image time series in (c) are also highly correlated. For instance, the time series of pixels from the same
organ that experience similar motion pattern or have similar physiology (e.g. myocardium, liver) are expected to have
similar intensity profiles. All of these schemes can be seen as patch based methods; the main difference is the shape
of the patches. Patch based methods aim to capture the extensive similarity between patches to recover the image
dataset from highly under sampled measurements. If the number of pixels in a patch is denoted by p, each of the
patches can be viewed as a point in a p dimensional space. However, because of the extensive structure/redundancy
between the pixel values, these signals are often localized to low-dimensional structures in this high dimensional space
as shown above.

where E is the the multichannel Fourier encoding operator. The function x may be 2D (n = 2) or
3D (n = 3), or higher dimensional, depending on the applications. In 2D/3D + time datasets (eg:
dynamic imaging applications), the acquisition model correspond to

si,j(t) =

∫
x(r, t) cj(r) exp(−jkTi r)dr, (3)

In this chapter, we will use the same symbol E as the multichannel Fourier sampling operator in
the dynamic setting. Specifically, E applied on the 3D/4D volume image x yields the vector of
measurements denoted by s. We denote x̂ to denote the discrete Fourier coefficients of the signal
on a Cartesian grid. Note that the multichannel measurements in (1) need not be in the Cartesian
domain.

2.2. Manifold models of signals

We start with a brief and intuitive illustration of the manifold assumption, with the objective
of connecting diverse image models used in the context of MRI. We note that an n × n image has
n2 pixels and hence can be viewed as a point in in n2 dimensional space. In the absence of any
redundancies (e.g. pixels have random values), each image is a random point; the images will fill
the n2 dimensional space. However, natural images have extensive redundancies between the pixels.
Hence, the images of interest often lie on low-dimensional structures (e.g. lines, union of subspaces,
curves) in n2 dimensional space.
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For example, consider three pixel images whose pixel values are uniformly random. If we plot
each of these three pixel images in 3D space, they fill the space. By contrast, if all of the images
have their pixel values are linearly increasing with the same slope, all the three pixel images will fall
on a straight line passing through the origin. When modeling larger 1-D images, one may extract
patches consisting of three consecutive pixels from the image, each of which can be viewed as a
point on the above line. This approach can be viewed as a global subspace model for the image. As
discussed in the next section, the above patch signals can be collected into a 3 ×m matrix, whose
columns are the patches. The above global linear model is restrictive and may not approximate real
world 1-D signals. A more general representation is a piecewise linear model, where the slope of the
signal is different at different locations. In this case, the three pixel patches from each image may
not live on a single line. Depending on the spatial location of the patch, they would lie on different
straight lines; the number of straight lines would depend on the number of piecewise linear regions.
This union of lines/subspaces model can be viewed as a generalization of the global subspace model
considered above.

The above representation can be generalized in many different ways to improve the efficiency and
approximation power. For instance, one can use piecewise polynomial or exponential signal models,
which are more efficient than the piecewise linear model. Note that the dimension of the space
depends on the number of pixels in the patch (m). With higher dimensions, one can capitalize more
complex inter-dependencies between the pixels, beyond the piecewise models discussed above. In
general, the patch signals do not fill the m-dimensional space (m being the number of pixels in the
patch); they often lie on low-dimensional constructs (e.g. clusters, smooth surfaces, curves), often
loosely termed as manifolds, in the m-dimensional space. This property is often referred to as the
manifold assumption in machine learning [7, 56].

The above idea can be extended to patches in 2D images, the pixels within the patches may have
non-linear relations between them, depending on the type of the image content (e.g. piecewise linear,
piecewise polynomial). Depending on the image content, one may consider patches with m pixels
of different sizes and shapes (see Fig. 2) to capture specific redundancies within the dataset. Gen-
eralizing the previous example, the patches can be viewed as points in high-dimensional space.This
chapter reviews the several approaches of learning the compact representation of data matrices,
whose columns are the signals of interest (images, patches, time-profiles of pixels in time series data)
that we will capitalize on using advanced algorithms to capitalize the unique redundancies in each
application.

2.3. Capitalization of structure using structured matrices

A common approach to capitalize the redundancies within the signals of interest (e.g. images
in a time-series, patches in an image, voxel profiles) is to create structured matrices from the data
and use their properties to recover the images. In the general setting, one can extract patch vectors
from images to for a matrix denoted by T (x):

T (x) =
[
P1(x) P2(x) . . . Pn(x)

]
(4)

Here, P1, .., Pn are patch extraction operators, which extracts a patch from image and convert it to a
column of T (x). If each patch has m pixels and there are n patches that cover the dataset, the data
matrix denoted by T (x), will be of dimension m × n. The size and shape of the patches could be
chosen depending on the application, to exploit a specific property of the dataset. For instance, if the
ith patch extraction operator is chosen as the ith image in a time series Pi(x(r, t)) = x(r, i); i = 1, .., T ,
we obtain

T (x) =
[
x(r, 1) . . . x(r, T )

]
, (5)

which is the standard Casorati matrix reviewed in Chapter 9, whose columns are the reshaped
images of the time series from the dynamic data (see Fig. 2.(a)). Similarly, if the patch extraction
operators extract the time profile of each pixel, we obtain the transpose of a Casorati matrix. These
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are the two extreme cases. One can choose 2D patch extraction operators (or 3D patch extraction
operators in the time series) to account for the correlation between patches in the dataset. In these
cases, the matrix can have a block convolutional structure. See Fig. 6. Hence, the methods that use
the low-rank property of these structured matrices are called structured low-rank (SLR) methods
[68, 21, 40, 52, 23, 30, 26, 54, 43]. One may also create a structured matrix T (x̂) by choosing the
patches from the discrete Fourier samples of the signal x̂. In fact, several of the structured low-rank
algorithms reviewed later in the chapter, rely on the low-rank property of structured matrices in the
Fourier domain.

The structured matrix T (x) is often much larger in size than the original dataset x; the operation
x → T (x) of creating the structured matrix from the samples is often called as a lifting operation.
We term the columns of T (x) as the signals of interest; the algorithms considered in this chapter
will promote the learning and capitalization of redundancies between the columns.

2.4. Efficient matrix representation in terms of factors

As discussed in Chapter 9 in the context of low-rank representation, the matrix T (x) can be
efficiently represented in terms of its factors as

T (x) = ΦWT , (6)

where Φ and W are the factor matrices, of size m × R and n × R, respectively. In the context of
low-rank matrices, R is the rank of the matrix r. When the data has high redundancy, R is much
smaller than m and n. Most of the algorithms choose an R > r, coupled with priors (e.g. `2 or `1
norms) on the factors discussed below to make the recovery well-posed.

In this case, the number of free parameters in Φ and W is often much smaller than the size of
T (x). When T (x) is the Casorati matrix, the columns of Φ can be viewed as the spatial factor, while
that of W is the temporal factor. In addition to enabling the recovery from undersampled data in
terms of the spatial and temporal factors, the above factor representation can also mitigate the high
memory demands of directly working with T (x), by conserving space and obtain a computationally
efficient algorithms. Implicit low-rank methods use the nuclear norm of T (x), denoted by ‖T (x)‖∗ =∑
i σi [T (x)], as a prior in reconstruction problems:

x∗ = arg min
x
‖E(x)− s‖2 + λ‖T (x)‖∗ (7)

to encourage the recovery of an x such that the matrix T (x) is low-rank. The nuclear norm has an
alternate form [64]:

‖T (x)‖∗ = ‖Φ‖2F + ‖W‖2F , where T (x) = ΦWT , (8)

provided R is greater than the rank of the matrix T (x). This interpretation allows one to implement
an implicit low-rank method without storing the large T (x) matrix:

{Φ∗,W∗},= arg min
Φ,W
‖E(ΦWT )− s‖2 + λ

(
‖Φ‖2F + ‖W‖2F

)
, (9)

when T (x) has a Casorati form. In addition to the computational and memory efficiency, the factor
interpretation opens the door to the use of other priors on the factors and the matrices, which can
offer improved performance. We will now focus on how more general factorization strategies can
offer improved performance, compared to the above low-rank methods.

3. Dictionary Learning and Blind compressed sensing

The global subspace models described in Chapter 9 enables the representation of dynamic
datasets. However, when the signals that one is trying to represent is very diverse (e.g. patches
in the image), the ability of the global subspace model to represent them is limited (see Fig. 1.a).
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For instance, there may be several groups of patches, each of which may possess a low-rank. How-
ever, the global subspace spanned by all the groups may be high. State-of-the art patch based
methods such as BM3D [17, 16] hence cluster the patches into subsets, followed by the application
of the subspace model to each subset. These schemes can be viewed as the approximation of the
global manifold locally by low-dimensional subspaces, as shown in Fig. 1.(b). A challenge with
these schemes is the two-step process, involving the identification of the similar subsets, followed by
low-rank modeling. These approaches are widely used in the denoising setting. Approaches such
as [2, 70, 71, 72] extend this approach to image reconstruction applications. These methods either
estimate the clusters from zero-filled MRI data [2, 70], or alternate between clustering and recovery
of images [71, 72]. More information on the alternating scheme is provided in Section 5.1.2 in the
context of manifold recovery. Dictionary learning and blind compressing can overcome the need for
this pre-clustering for the recovery of images from undersampled data.

3.1. Subspace selection for each signal of interest using sparse representation

Both dictionary learning and blind compressing schemes rely on a sparse image representation,
as shown in Fig. 1.(c). The sparse model allows one to choose the specific basis functions needed
to represent a specific column of T (x) (patch), by only allowing only a few coefficients of the
representation to be non-zero. For instance, the sparse model [15] represents the signal as

x(r) ≈
K∑
i=1

wi ϕi(r) =
[
ϕ1(r) ϕ2(r) . . . ϕK(r)

]︸ ︷︷ ︸
Φ


w1

w2

...
wK


︸ ︷︷ ︸

wT

, where ‖w‖`0 ≤ k (10)

Here, ‖w‖`0 denotes the number of non-zero terms in the coefficient vector w. This model allows
the basis functions used to approximate each group of signals to be different, and hence offer more
compact representation of the data. Traditional compressed sensing schemes relies on pre-determined
dictionaries (e.g. wavelet transform) Φ. Rather than using fixed dictionaries, several authors have
proposed to adapt or learn the dictionaries or transforms from the data [60, 35, 36, 61, 62, 8]. The
adaptation of the dictionary to the data depending on the specific signal offers a quite significant
reduction in the number of measurements. The learning is either performed from several fully-
sampled example images [60, 61, 8, 63] or from a single undersampled dataset [35, 36, 62, 8] in a
joint manner. The first approach is termed pre-learning, while the joint learning of the dictionary
and coefficients from the data is termed blind compressed sensing. Since the `0 norm is not convex, a
common approach is to approximate it with the `1 norm that is convex [15]. Rather than employing
dictionaries, the use of analysis operators Ψ is also a common approach.

3.2. Dictionary pre-learning

In pre-learning, the learning of the dictionary from a family of fully sampled signals X =
[x1, ..,xN ] is posed as an optimization problem [60, 61]:

{Φ,W} = arg min
Φ,W
‖X−ΦWT ‖2 + λ1‖W‖`0 + λ2 R(Φ), (11)

where R(Φ) is a regularization penalty on the dictionary atoms. A simple choice for R(Φ) = ‖Φ‖2F
is the Frobenius norm, where the energy of the dictionary is restricted. Regularization penalties
that encourage the dictionary to be an orthogonal transform, to have low condition number, or be
a combination of orthogonal transforms were introduced by several authors [60, 35, 36, 61, 62, 8].

Note that the above problem in (11) is convex in W if Φ is known. Likewise, for many of the
common choices of R, the optimization of Φ assuming W to be known, is also a simple problem. For
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Figure 3: Comparison of low rank, Fourier sparsity, and Blind compressed sensing (BCS) reconstructions on a brain
perfusion MRI dataset retrospectively under sampled at an under sampling factor of 10 fold. BCS is shown to provide
superior spatial and temporal fidelity in characterizing the contrast agent temporal dynamics compared to low rank
and CS reconstructions.

instance, when R(Φ) = ‖Φ‖2F is the Frobenius norm, the solution of Φ is a quadratic problem that
has an analytical solution. However, the joint optimization of Φ and W is a non-convex problem.
Nevertheless, this problem has been well studied by several researchers, especially when Φ is a
transform [60, 35, 36, 61, 62, 8]. The learning of the transform to the class of signals results in
improved performance over the use of standard transforms such as wavelet transform.

3.2.1. Dictionary pre-learning, applied to static MRI

In static imaging, a common approach is to assume the image patches of size p×p to be sparse in
a dictionary. Here the signal matrix in (11) is the patch matrix X = T (x) is of dimension p2×n. The
ability to choose the non-zero coefficients for each patch facilitates the use of the same dictionary
for the entire image. The above formulation can be extended to learning from multiple images by
horizontally stacking the patch matrices as [T (x1), ..., T (xN )]. The dictionary learning approach is
thus a learning based alternative for transformations such as wavelets or discrete cosine transform
widely used in compressed sensing. It is also an alternative to patch based low-rank methods (e.g.
BM3D) used in the image domain, where similar patches need to be clustered prior to subspace
fitting. Unlike these methods, the patch dictionary based schemes use the same dictionary for all
patches; the sparsity of the coefficients allow the adaptation of the specific basis functions used in
the representation to the specific patch. Once the dictionary Φ is learned from multiple images, it
can be used to recover images from undersampled measurements [60] as

W∗ = arg min
W

α‖E(x)− s‖2 + ‖T (x)−ΦWT ‖2 + λ‖W‖`p , (12)

which is the extension of compressive sensing (CS) to image patches. The second and third term
encourages the patches in the solution to be sparse linear combination of atoms in Φ, while the first
term encourages x to satisfy data consistency; the optimal solution is a compromise between the
two, where the relative importance of data consistency is controlled by α.

3.3. Blind compressive sensing (BCS)

BCS schemes estimate the dictionary and the coeffficients directly from the measured under-
sampled data, rather than pre-learning the dictionary from exemplar data. By adapting the dictio-
nary to the specific image content, these schemes can offer improved performance.
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Fig. 1. Comparison of blind compressed sensing (BCS) and blind linear model (BLM) representations of dynamic imaging data: The Casorati
form of the dynamic signal � is shown in (a). The BLM and BCS decompositions of � are respectively shown in (b) and (c). BCS uses
a large over-complete dictionary, unlike the orthogonal dictionary with few basis functions in BLM; (R > r). Note that the coefficients/
spatial weights in BCS are sparser than that of BLM. The temporal basis functions in the BCS dictionary are representative of specific
regions, since they are not constrained to be orthogonal. For example, the 1st, 2nd columns of UM⇥R in BCS correspond respectively to
the temporal dynamics of the right and left ventricles in this myocardial perfusion data with motion. We observe that only 4-5 coefficients
per pixel are sufficient to represent the dataset.

rank. The dependence of the degrees of freedom on the number of temporal basis function is the main reason for the tradeoff
between accuracy and achievable acceleration in applications with large motion.

We introduce a novel dynamic imaging scheme, termed as blind compressive sensing (BCS), to improve the recovery of
dynamic imaging datasets with large inter-frame motion. Similar to classical CS schemes [5]–[7], the voxel intensity profiles
are modeled as a sparse linear combination of basis functions in a dictionary. However, instead of assuming a fixed dictionary,
the BCS scheme estimates the dictionary from the undersampled measurements itself. While this approach of estimating the
coefficients and dictionary from the data is similar to BLM methods, the main difference is the sparsity assumption on the
coefficients. In addition, the dictionary in BCS is much larger and the temporal basis functions are not constrained to be
orthogonal (see figure 1). The significantly larger number of basis functions in the BCS dictionary considerably improves the
approximation of the dynamic signal, especially for datasets with significant inter-frame motion. The number of degrees of
freedom of the BCS scheme is Mk+RN�1, where k is the average sparsity of the representation, R is the number of temporal
basis functions in the dictionary, and N is the total number of time frames. However, in dynamic MRI, since M >> N the
degrees of freedom is dominated by the average sparsity k and not the dictionary size R, for reasonable dictionary sizes.
In contrast to BLM, since the degrees of freedom in BCS is not heavily dependent on the number of basis functions, the
representation is richer and hence provide an improved trade-off between accuracy and achievable acceleration.

An efficient computational algorithm to solve for the sparse coefficients and the dictionary is introduced in this paper. In
the BCS representation, the signal matrix � is modeled as the product � = UV, where U is the sparse coefficient matrix V
is the temporal dictionary. The recovery is formulated as a constrained optimization problem, where the criterion is a linear
combination of the data consistency term and a sparsity promoting `1 prior on U, subject to a Frobenius norm (energy) constraint
on V. We solve for U and V using a majorize-minimize framework. Specifically, we decompose the original optimization
problem into three simpler problems. An alternating minimization strategy is used, where we cycle through the minimization
of three simpler problems. The comparison of the proposed algorithm with a scheme that alternates between sparse coding
and dictionary estimation demonstrates the computational efficiency of the proposed framework; both methods converge to the
same minimum, while the proposed scheme is approximately ten times faster. We also observe that the proposed scheme is
less sensitive to initial guesses, compared to the extension of the K-SVD scheme [19] to under-sampled dynamic MRI setting.
It is seen that the `1 sparsity norm and Frobenius norm dictionary constraint enables the attenuation of insignificant dictionary
basis functions, compared with the `0 sparsity norm and column norm dictionary constraint used by most dictionary learning
schemes. This implicit model order selection property is important in the under sampled setting since the number of basis
functions that can be reliably estimated is dependent on the available data and the signal to noise ratio.

The proposed work has some similarities to [20], where a patch dictionary is learned to exploit the correlations between
image patches in a static image. The key difference is that the proposed scheme exploits the correlations between voxel time
profiles in dynamic imaging rather than redundancies between image patches. The `0 norm sparsity constraints and unit column
norm dictionary constraints are assumed in [20]. The adaptation of this formulation to our setting resulted in the learning of
noisy basis functions at high acceleration factors. Similar to [21], the setting in [20] permits the reconstructed dataset to deviate
from the sparse model. The denoising scheme is well-posed even in this relaxed setting since the authors assume overlapping
patches; even if a patch does not have a sparse representation in the dictionary, the pixels in the patch are still constrained
by the sparse representations of other patches containing them. Since there is no redundancy in our setting, the adaptation
of the above scheme to our setting may also result in alias artifacts. Furthermore, the proposed numerical algorithm is very
different from the optimization scheme in [20], where they alternate between a greedy K-SVD dictionary learning algorithm
and a reconstruction update step admitting an efficient closed-form solution. We observe that the greedy approach is vulnerable
to local minima in the dynamic imaging setting.

Figure 4: Comparison of blind compressed sensing (BCS) and low-rank (blind linear model) representations of dynamic
imaging data: The Casorati form of the dynamic signal is shown in (a) . The BLM and BCS decompositions are
respectively shown in (b) and (c). BCS uses a large over-complete dictionary, unlike the orthogonal dictionary with
few basis functions in BLM; (R > r). Note that the coefficients/spatial weights in BCS are sparse than that of BLM.
The temporal basis functions in BCS dictionary are representative of specific regions, since they are not constrained to
be orthogonal. For example, the 1st, 2nd columns of the temporal basis functions in BCS correspond respectively to
the temporal dynamics of the right and left ventricles in this myocardial perfusion data with motion. We observe that
only 4-5 coefficients per pixel are sufficient to represent the dataset. This figure adapted from [36] with permission
from IEEE.

3.3.1. Application of BCS to dynamic MRI

In the context of dynamic MRI, blind compressed sensing methods learn the bilinear model in
(11) directly from undersampled data [35, 36, 62, 8]. In the dynamic setting with the transpose of the
Casorati matrix, each column of X corresponds to the temporal profile of a pixel. The factorization
X = ΦWT amounts to expressing the temporal profiles of each pixel as a linear combination of the
columns of the dictionary Φ. When W is sparse, the temporal profile of each pixel is expressed as
the linear combination of a few atoms, which change from pixel to pixel. Please see Fig. 4 for the
difference between low-rank and dictionary representation. Unlike the low-rank setting that uses
the same basis functions at all pixels, the dictionary learning scheme is able to customize the basis
functions for each pixel. In particular, the temporal basis functions chosen for the heart region with
periodic oscillations may be different from that of a static region.

Since the temporal profiles of the pixels change from subject to subject, it is not practical to
pre-learn the dictionary from other dataset. The dictionary Φ and its coefficients W are hence
learned directly from the undersampled dataset itself as

{Φ,W} = arg min
Φ,W
‖E
(
ΦWT

)
− s‖2 + λ1‖W‖`0 + λ2 R(Φ), (13)

The use of blind compressed sensing scheme in (13) further improves the quality of dynamic MRI
reconstructions [35, 36, 8] compared to linear (low-rank) models. Specifically, low-rank models uses
the same basis functions for the voxel profiles of each pixel. The projection of the time series to the
signal subspace results in non-local temporal averaging [9]. Since the basis functions are the same
for each pixel, the temporal point spread functions are the same for each pixel. By contrast, the
active basis functions (ones corresponding to non-zero coefficients) in sparse models can potentially
differ from pixel to pixel and hence, the temporal averaging at each pixel is different. This is a
desirable feature in applications where the temporal motion patterns are drastically different from
pixel to pixel depending on the organs within the field of view (eg. heart, lung). An illustration
of the blind compressed sensing (BCS) approach is shown in Fig. 3, where it is compared against
global low-rank methods and approaches that use sparse models with fixed (Fourier) dictionary.

3.3.2. Application of BCS to static imaging

The blind compressed sensing formulation in (13) can also modified to the patch setting. In
particular, the dictionary, the coefficient matrix W, and the resulting image are all simultaneously
learned from the measured data [62] as:

{x,W,Φ} = arg min
x,W,Φ

‖E(x)− s‖2 + α‖T (x)−ΦWT ‖2 + λ1‖W‖`p + λ2R(Φ) (14)
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Figure 5: High resolution diffusion MRI enabled by the patch low-rank methods in k-space. The image on the left
side is acquired using a 4-shot diffusion weighted EPI scan at 1.1mm isotropic resolution on 7 Tesla MRI with a
standard clinical strength gradient of 40 mTesla/m. For comparison, a typical 2mm isotropic resolution single-shot
diffusion MRI scan slice-matched from the same study, is provided on the right. The multi-shot data on the left is
reconstructed using the MUSSELS method which makes use of the patch low-rank in k-space and parallel imaging to
recover diffusion weighted images free of phase errors. The iterative reweighted least squares implementation enables
efficient reconstruction for such high dimensional datasets.

Here, the first term is the data-consistency term, which measures the discrepancy of the recovered
image x from the measurements. Ideally, we would like to have the patch matrix T (x) extracted by
the image to have a compact factorization T (x) = ΦWT , where the coefficient matrix W is sparse
and the dictionary is compact under a prior R(Φ) such as ‖Φ‖`2 or ‖Φ‖`1 . Rather than introducing
the factorization as a constraint, the formulation in (14) relies on a penalty term; when α→∞, the
solution will satisfy T (x) = ΦWT .

4. Structured low-rank methods

As mentioned in Section 2.2, 2D/3D patch extraction operations can generate data matrices
with block convolutional structure. The earlier methods relied on patches exclusively in the image
domain. We will now review methods that exploit the similarity of patches in the Fourier domain,
or equivalently consider structured matrices T (x̂) obtained by lifting the discrete Fourier coefficients
of the signal x̂. It is interesting to note that several image properties result in extensive correlations
between the k-space samples, which can be capitalized using global low-rank regularization.

4.1. Low-rank structure of patch matrices in k-space

The structured low-rank methods in MRI started with the multichannel methods termed as
ESPIRIT [29], simultaneous autocalibrating and k-space estimation (SAKE) [68], followed by single
channel approaches termed as Low-Rank Modeling of Local k-Space Neighborhoods (LORAKS) [21,
23, 22], Annihilating filter based LOw-rank HAnkel matrix ALOHA [30, 26, 27, 25], structured low-
rank (SLR) [52, 54, 50] and Multi-shot sensitivity-encoded diffusion data recovery using structured
low-rank matrix completion (MUSSELS) [40, 43]. We now briefly review some of the low-rank
relations resulting from specific signal properties.

4.1.1. Low rank relations in multi-channel MRI

In parallel MRI schemes that acquire multichannel data, the sensitivity-weighted image data are
given by

xi(r) = x(r) ci(r), i = 1, .., Nchannels (15)
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where ci(r) is the sensitivity weighting of the ith receiver coil. The multichannel relations specified
by (15) results in image domain annihilation relations [46]

x(r)c1(r)︸ ︷︷ ︸
x1(r)

c2(r)− x(r)c2(r)︸ ︷︷ ︸
x2(r)

c1(r) = 0. (16)

One can take the Fourier transforms of both sides of the above equation to obtain [29, 68]

x̂1 ∗ ĉ2 − x̂2 ∗ ĉ1 = 0 (17)

When the coil sensitivities ci are smooth, one can reliably approximate them as bandlimited
functions, whose Fourier support is restricted to a p × p square region. We now focus on the
convolution between the signal x and a finite impulse response filter c of support p × p. The
convolution output at each pixel r can be thought of as the innerproduct between the flipped version
of a p × p patch of x, centered at r with c. Thus, the convolution can be expressed in the matrix
form as

c ∗ x = cT T (x), (18)

where T (x) is a lifted matrix, whose columns are flipped versions of p × p patches from x. The
vector c corresponds to a vectorized version of the filter c. With this property, one can rewrite (17)
as

cT2 T (x̂1)− cT1 T (x̂2) = 0 (19)

We note that similar annihilation relations can be found for every pair of channels. We can compactly
express these relations in the matrix form as

ĉT2 −ĉT1 0 . . .
ĉT3 0 −ĉT1 . . .
...

...
. . . . . .

ĉTNc
0 0 . . . −ĉT1


︸ ︷︷ ︸

P


T (x̂1)
T (x̂2)

...
T (x̂Nc)


︸ ︷︷ ︸
M(X̂)

= 0. (20)

Note that each of the rows of P are null-vectors of M(X̂), which are linearly independent. Hence,

the matrixM(X̂) is low-rank [29, 68]. Here X̂ = [x̂1, .., x̂Nc
] is the multichannel data in the Fourier

domain. The above multichannel convolution relations can also be rewritten as

X̂ = (I −P)︸ ︷︷ ︸
G

M(X̂). (21)

where the operator I in (21) extracts X̂ fromM(X̂) (i.e., I{M(X̂)} = X̂). The above relation forms
the basis of the auto-calibrating parallel MRI reconstruction method, SAKE [68], which interpolates
the missing k-space samples of the accelerated acquisition, based on the structured low-rank property.
The SAKE relation in (21) can be viewed as a generalization of GRAPPA reconstruction method
for multi-channel MRI. [20].

The formulations in (16)-(20) is general enough to be applied to settings beyond multi-channel
MRI. Researchers have used these relations in several contexts such as the calibration-less compen-
sation of phase errors in multichannel diffusion MRI [41, 39], correction of Nyquist ghost artifacts
in echo-planar imaging [43, 37], and correction of trajectory errors in radial MRI [42]. In all of these
cases, different segments of k-space experience different phase errors [41, 43, 37]. These phase errors
can be modeled as image domain weighting (similar to the coil sensitivity weighting studied above),
allowing the use of the above relations (16)-(20), to derive the structured data matrix with the
low-rank property. Figure 5 shows the application of the patch low-rank idea for the reconstruction
of high resolution diffusion MRI data from multi-shot acquisitions, where the phase compensation
of the multi-shot data were achieved in a calibration-less manner using patch low-rank.
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4.1.2. Low-rank structure resulting from finite support and smoothly varying image phase

The LORAKS algorithms introduced in [21, 23, 22] makes use of the property of finite support of
images to derive the patch low-rank relations instead of the image domain weightings. Haldar [21]
showed that for images possessing finite support i.e., the signal x(r) is zero within a region ri ∈ Ω,
the annihilation relations of the form

x(r) · fi(r) = 0 (22)

can be derived, where fi(r) are functions (also referred to as ”filters”) that are zero at all locations
except at ri ∈ Ω. Additionally, when fi(r) is assumed to be smooth so that it is bandlimited in the
Fourier domain, the above multiplication relations translate to convolution relations in k-space

x̂(r) ∗ f̂i(r) = 0 (23)

resulting in annihilation relations in the Fourier domain, and results in the reduction of the degrees
of freedom. Typically, one can find multiple filters fi(r) that satisfy the relation in (22). The above
relation implies that

T (x̂) F = 0. (24)

or equivalently T (x) is a low-rank matrix. Haldar et. al has empirically showed that the rank of
the lifted convolution matrices, T (x), corresponding to MR images indeed depends on the support
of the signal. Since these patches are formed from single channel images, it can be applied for
single-channel under-sampled recovery.

It is well known that real images exhibit conjugate symmetry in k-space, resulting in annihilation
relations

x̂[k]− x̂[−k]∗ = 0. (25)

When the phase of the images are smoothly varying, [21] showed that one can construct a specialized
convolution matrix using the 2D patches from the conjugate symmetic k-space samples also, that
satisfy annihilation relations and hence is low-rank. These results translate to structured low-rank
algorithms that account for the above patch low-rank structure.

4.1.3. Low-rank structure resulting from continuous domain sparsity

Here, we discuss the low-rank relations for sparse continuous domain functions, which enable
super-resolution reconstructions. Traditional CS schemes assume the images to be sparse on a
specific grid, which may be an unrealistic assumption. Several researchers have considered the
extension of CS for the super-resolution setting, where the sparse samples of the signal may not be
localized to a grid [14]. Specifically, we can use an image model using impulse functions

x(r) =

R∑
i=1

γi δ(r − ri), (26)

for sparse images, where γi are the weights and ri are the location of the impulses, which are not
necessarily on a uniform grid. The SLR [53] and ALOHA settings [26] extends the Fourier domain
annihilation relations discussed in the previous sections for the recovery of continuous domain sparse
signals.

To see how the above sparse image model can harness the Fourier domain annihilation relations,
we first discuss a simple 1-D case. The seminal work by Prony dating back to 1885 showed that 1-D
exponential signal of the form x̂[k] = αk can be annihilated by convolution as follows [28] :

x̂[k] ∗ h[k] = αk︸︷︷︸
x̂[k]

−α αk−1︸ ︷︷ ︸
x̂[k−1]

= 0, (27)
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Fig. 1. Illustration of SLR-based interpolation and extrapolation methods in the context of 1-D FRI. (a) In SLR interpolation, the data is acquired
on a non-uniformly sub-sampled Fourier grid. The SLR interpolation scheme relies on a lifting of the signal samples to a Hankel matrix, which
has missing entries indicated by the hashed boxes. The one-to-one relation between the rank of a matrix and the continuous domain sparsity of
the space domain signal is used to pose the recovery of missing samples as a structured low-rank matrix completion (SLRMC) problem in the
lifted matrix domain. Specifically, the algorithm determines the matrix with the lowest rank that satisfies the Hankel structure and is consistent
with the known matrix entries. Post-recovery, the matrix is unlifted to obtain the Fourier samples of the signal. (b) In SLR extrapolation
problems, the low-frequency Fourier coefficients of the signal are uniformly sampled. The central fully known matrix region is used to estimate
the null space of the matrix, which is used to linear-predict/extrapolate the missing high-frequency samples. The SLR algorithms that exploit
the different signal structures differ only in the structure of the lifted matrix; the algorithms are essentially the same.

4) The non-linear generalization of FRI theory severs to recover points on smooth surfaces in high-dimensional

spaces, which facilitates the joint recovery of an ensemble of images from their few measurements [18].

5) The main practical benefit of SLR schemes is their ability to capture a broad range of signal priors, resulting

in a wide range of applications, including static MRI [2], [4], [8], [14], dynamic MRI [7], diffusion MRI

[23], echo planar imaging (EPI) ghost correction [17], [28], [29], trajectory error correction [17], MR artifact

correction [10], parallel MRI [2]–[4], [24], MR parameter mapping [6], [7], multi-contrast image recovery

[15], spectroscopic imaging [12], [30], and field inhomogeneity compensation [31].

The above generalizations come with theoretical recovery guarantees [11], [13], fast algorithms [4], [8], and

extensions to imaging problems beyond MRI [32]. In addition, this framework provides rich insights in the deep

links between 1-D FRI sampling theory [26], CS [33], low-rank matrix completion, and super-resolution theory

[22].

II. OVERVIEW
A. Image acquisition in MRI

In this section, we will briefly describe the image formation in MRI and introduce notations and terminologies

used throughout the paper.

1) Single-channel MRI measurements: The image acquisition in MRI constitutes the sampling of the Fourier

transform of the image f(x). The measurements in the Fourier domain (also referred to as k-space) are denoted by

f̂(k) = [Ff] (k) ∶= � f(x)e−i2⇡kT xdx. (1)

Here, x ∈ Rd, d = 2,�,4 and k ∈ Zd denote the image domain and k-space coordinates, respectively. The goal of

MR image recovery is then to reconstruct f(x) from the above measurements, which are measured on a sparse

subset of the Fourier domain.

October 28, 2019 DRAFT

Figure 6: Illustration of SLR-based interpolation and extrapolation methods in the context of 1-D FRI. (a) In SLR
interpolation, the data is acquired on a non-uniformly sub-sampled Fourier grid. The SLR interpolation scheme relies
on a lifting of the signal samples to a Hankel matrix, which has missing entries indicated by the hashed boxes. The
one-to-one relation between the rank of a matrix and the continuous domain sparsity of the space domain signal is
used to pose the recovery of missing samples as a structured low-rank matrix completion (SLRMC) problem in the
lifted matrix domain. Specifically, the algorithm determines the matrix with the lowest rank that satisfies the Hankel
structure and is consistent with the known matrix entries. Post-recovery, the matrix is unlifted to obtain the Fourier
samples of the signal. (b) In SLR extrapolation problems, the low-frequency Fourier coefficients of the signal are
uniformly sampled. The central fully known matrix region is used to estimate the null space of the matrix, which is
used to linear-predict/extrapolate the missing high-frequency samples. The SLR algorithms that exploit the different
signal structures differ only in the structure of the lifted matrix; the algorithms are essentially the same. This figure
is copied from [24] with permission from IEEE.

where h[k] is a two tap filter given by [1,−α]. This theory is relevant to MR images because when
α = exp(jr0), x̂[k] = exp(jr0k) is the Fourier transform of a sparse signal of the form δ(r − r0).

More generally, when the signal is a linear combination of multiple impulses at location r0, .., rk,
its Fourier coefficients can be annihilated by the convolution with a k+1 tap filter; the k+1 tap filter
is obtained by the convolution of the k two-tap filters that annihilates each of the above exponentials.
Here, the location of the impulses ri are not required to be localized to a specific grid; this approach
may be viewed as the continuous domain extension of discrete compressed sensing methods. The
extension of this idea to two dimensions is relatively straightforward.

The convolution-based annihilation relation in (27) for k impulses for the super-resolution recov-
ery can thus be compactly expressed as [28, 21, 52, 26]

hT


x̂[0] x̂[1] . . . x̂[N − k]
x̂[1] x̂[2] . . . x̂[N − k + 1]

...
...

. . .
...

x̂[k] x̂[1] . . . x̂[N ]


︸ ︷︷ ︸

T (x̂)

= 0 (28)

Note that T (x̂) is a patch matrix obtained by lifting the 1-D signal x̂[n], which are the Fourier
coefficients of x. The columns of T (x̂) correspond to (k + 1) × 1 patches in x. (28) implies that
the matrix T (x̂) has a null-space vector. If the number of impulses is K ′ < k, the above matrix
will have k −K ′ + 1 null-space vectors [28, 26]. In other words, the rank of the matrix T (x̂) is a
surrogate for the number of impulses in the signal.

Let us also briefly discuss the image domain interpretation of the filters h[k]. Taking the inverse
Fourier transform of (27), we obtain

ĥ(r) · x(r) = 0, (29)

where ĥ(r) and x(r) the inverse Fourier transforms of h[k] and x̂[k], respectively. Note that the
convolution in (27) is translated to the point-by-point multiplication [52, 53]. For the example
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considered in (27), we get

µ(r) = 1− exp(jr0)︸ ︷︷ ︸
α

exp(−jr) = 1− exp (−j(r − r0)) (30)

Note that this exponential is a first order polynomial that is non-zero at all locations, except at
r = r0, which is the location of the impulse. Likewise, when the signal x consists of k impulses, µ(x)
is a bandlimited function that is zero only on the non-zero locations of x(r). This interpretation will
be useful in the next section for the discussion of piecewise smooth images.

4.1.4. Low-rank structure of piecewise smooth images

We can extend the annihilation relations for sparse image models to more general settings. The
gradients of piecewise constant images are often significantly more sparse [52] than the support of
the signal considered in [21] or sparse model assumed in [26]. Note that the Fourier transform of

the gradients of the 1-D signal ∂̂r1x = jkr1 x̂. Thus, replacing x̂ by ∂̂r1f will result in a matrix with
a significantly smaller rank.

The generalization of the above idea to multiple dimensions is not straightforward from a theo-
retical perspective. Specifically, the gradient of a piecewise constant image is non-zero on the edges.
Unlike the sparse model considered in the 1D case where the number of impulses is finite, the gra-
dient cannot be modeled as the sum of a finite number of impulses, which makes the recovery of
the 2D images from few measurements is ill-posed. Prony’s model and the related theory is only
valid when the number of impulses is finite. Nevertheless, the problem can be made well-posed by
assuming the edges to be localized to the zero-sets of a 2-D bandlimited function µ(r) [52, 53]. This
model amounts to stating that the piecewise constant image has smooth edge contours. In this case,
we have

µ(r) ·
[
∂r1x(r) ∂r2x(r)

]︸ ︷︷ ︸
∇x(r)

= 0 (31)

Here, µ(r) is a bandlimited function that is zero at the edges of the image and non-zero elsewhere.
Taking the Fourier transform on both sides, we obtain h ∗ T2(x), where

T2(x̂) =
[
T
(
∂̂r1x

)
T
(
∂̂r2x

)]
, (32)

where T
(
∂̂r1x

)
is the 2-D patch matrix of the Fourier coefficients of the partial derivative of x.

The same approach can be extended to piecewise polynomials by replacing (32) with a matrix with
more partial derivatives. The number of rows in equal to p2, which is dependent on the size of
the patch. The number of columns is equal to the number of valid patches in the images, without
considering the regions outside the image. Note that as the size of the patches increase, the number
of patches and the number of columns decrease. Theoretical results show that the best performance

is obtained when the matrix T2

(
∂̂r1x

)
is square shaped, which roughly correspond to each of the

patch dimensions being half the corresponding image dimensions. However, practical algorithmic
considerations such as memory and computational constraints often force the size of the patches to
be smaller.

4.1.5. Low-rank relations in parameter mapping

Many parameter mapping applications in MRI consider the imaging of a time series, where the
intensity of the pixels change in an exponential fashion (e.g.ρ[r,n] = α[r]n + c, where c and α are
arbitrary constants). Such a signal can be annihilated by a finite difference filter, whose parameters
depend on α. The same approach can be readily extended to cases where the signal is the sum of
several exponentials, where the size of the filter depends on the number exponentials. For simplicity,
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we will consider a single exponential signal x[n] = αn. From (27), we see that such exponential
signals satisfy an annihilation relation. Thus, the matrices obtained by lifting the time series entries
will be low-rank in nature. Moreover, in many cases, the parameter maps vary smoothly in space i.e.,
the exponential decay in a given pixel is highly correlated to the exponential decay in the neighboring
pixels. In such cases, the coefficients of the exponentials and the parameters of the exponentials
themselves, can be modeled as band-limited functions. In this case, the k-t space samples of the
the parameter mapping application can be annihilated by multichannel convolution relations. This
property was used successfully to recover T1ρ and T2 maps in parameter mapping [4] applications
as well as B0 field inhomogenity compensated recovery of EPI images [5].

4.2. Algorithms for k-space patch low-rank methods

In section 4.1, we discussed several properties of the images that result in Fourier domain anni-
hilation relations, which translate to low-rank relations on the associated structured matrices. The
main difference for each problem is the lifting operation that is used to create the structured matrix
from the Fourier samples. The lifting operation depends upon the specific image property that is
accounted for. Once the structured data matrix is created, the recovery of the images using the
low-rank relations is posed as an optimization problem [22, 52, 53, 26] . We will first discuss the
multi-channel parallel MRI case where the recovery of the images from the under-sampled measure-
ments can be written as an unconstrained optimization

x∗ = arg min
x
‖E(x)− s‖2 + λ‖T (x̂)‖∗, (33)

Here, T (x̂) is the lifted structured matrix formed from the multi-channel convolution relations in
(20). The above problem can be solved as a general low-rank matrix completion problem, where
the Hankel structure is additionally enforced. The rank minimization can be performed using sin-
gular value thresholding schemes and the optimization can be performed in an alternating manner
updating the data consistency and rank-minimization. Figure 6 shows a schematic of this approach
where the above problem is applied to the recovery of missing k-space samples as an interpolation
problem.

The number of entries of the matrix T (x̂) is several orders of magnitude larger than the size of
the image, as discussed earlier. Because of this, the storage and computation of the matrix is often
impossible in high resolution and multidimensional applications. Moreover, the rank-minimization
involves computing the SVD which is also computational demanding. Several algorithms were in-
troduced to solve k-space low-rank problems similar to (33), as described in [22, 52, 53, 26] .

4.3. Iterative reweighted least square (IRLS) algorithm

The IRLS scheme relies on the approximation of the nuclear norm [54]:

‖T2(x̂)‖∗ ≈ ‖Q T (x̂)‖2, (34)

where Q is a p2 × p2 matrix:

Q =
(
T (x̂)T (x̂)T

)−1/4
(35)

The main benefits of the IRLS algorithm [54] is that it significantly reduces the computational
complexity and the memory demand. In addition, we use this algorithm some of the existing SLR
methods in Section 4.4 and to to connect kernel PCA with manifold methods in Section 5. In the
perfectly low-rank setting, Q can be viewed as the projection onto the null-space and hence the right
hand side of (34) can be viewed as the energy of the projection of T (x) on to the null-space.

Using the above approximation and the structure of the matrix T (x), one can solve (28) by
alternating between (35) and

f∗ = arg min
f
‖E(x)− s‖2 + λ

p2∑
i=1

‖x̂ ∗ qi‖2, (36)
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where qi are the columns of Q [54]. The main benefit of (36) is that this formulation does not need
the computation and storage of the large matrix T2(x), which makes it possible to apply the scheme
to multidimensional high-resolution applications.

A second approach is to approximate the nuclear norm using UV factorization [26]

‖T2(x̂)‖∗ ≈ arg min
U,V

, ‖U‖2F + ‖V‖2F (37)

This method do not involve SVD computation, thus speeding up the minimization.

4.4. Algorithms that rely on calibration data

When a fully sampled center of k-space is available, a calibration based strategy can be employed
for solving the minimization problem. Using the known data from the fully sampled region, the null-
space filters qi can be estimated. Note from (34) that the projection to the null-space should be
as small as possible, which implies that Q T (x) ≈ 0. Hence, Q can be estimated from the central
k-space regions by solving [52, 29]

Q = arg min ‖Q T (kcentral)‖2 such that ‖Q‖F = 1 (38)

using eigen value decomposition of T (kcentral) corresponding to the matrix constructed from central
k-space samples. Once Q is known, one can solve (36) with the knowledge of the filters, resulting
in computationally efficient solution. Figure 6 shows a schematic of this approach where the above
problem is applied to the recovery of missing k-space samples as an extrapolation problem.

Before we conclude the patch low-rank methods, we note several existing MRI reconstructions
that are related to the patch low-rank methods discussed above. The popular ESPIRIT reconstruc-
tion uses the null space property to estimate the coil sensitivities using an eigen decomposition [29].
In particular, once Q or equivalently the signal subspace of T2 is obtained, it performs a pixel by
pixel eigen decomposition to obtain the coil sensitivities. The GRAPPA [20] approach described in
Chapter 6 is also related. For instance, as the size of the patch/filter specified by p decreases, the
number of columns/rows in Q will decrease. If there is only column, the equation q T2(kcentral) = 0
can be rewritten as qo T2(ko) = −qu T2(ku), obtained by partitioning the rows and columns. Here
ko and ku are the k-space samples that can be observed and cannot be unobserved, respectively.
These simplifying assumptions can translate to the GRAPPA setting, which is less general than the
ESPIRIT setting.

5. Smooth manifold models

Smooth manifold models use non-linear representations, which are more powerful in capturing the
non-linear relations between signals compared to the linear counterparts. They assume the signals
(images/patches/pixel profiles) to be living on a smooth image manifold (see Fig. 1). Methods
relying on smooth manifold models include non-local means [12], non-local regularization [44], kernel
methods [47, 69, 49, 48, 67], STORM [1, 45, 57, 10, 59], and recent extensions of STORM using deep
generative models [74, 75]. Most of the methods rely on modeling/smoothing the signals based on
their proximity on the manifold rather than in the original domain. For instance, the patches that
may be far apart in space might be similar and hence close on the manifold.

We note that standard Tikhonov regularization penalizes the gradient of the image using the
regularization term ‖∇x‖2. This approach capitalizes on the fact that the intensities of the adjacent
pixels are similar. Most algorithms for Tikhonov regularization rely on the Laplacian of the image
∆x. For 1-D images with n pixels, the Laplacian is often approximated by the x×n finite difference
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Figure 7: Illustration of the Laplacian matrix used in manifold methods. Each row of the Laplacian matrix may be
thought of a second order derivative operator in the manifold domain. In this example, the fourth row of the matrix
correspond to the finite difference operator for the fourth image in the time series. Note that its neighbors on the
manifold are not necessarily its temporal neighbors. The weights denote how close the images are to the fourth image
in the time series. We illustrated an example with three neighbors, but the number of neighbors could be chosen
arbitrarily and may vary from frame to frame.

matrix

L =


−2 1 0 . . . 1
1 −2 1 . . . 0
0 1 −2 1 . . .
1 0 . . . 1 −2

 . (39)

This matrix is block diagonal and captures the neighbor structure of the pixels in the image, thus
facilitating the smoothing of the image. The sum of the off diagonal entries of each row is equal
to the negative of the diagonal entry. In manifold methods, the smoothing is enabled by a custom
Laplacian matrix, which captures the neighborhood structure of the images in the manifold, and is
estimated from the data . The entries of the Laplacian matrix are chosen based on the proximity of
the signals on the manifold (see Fig. 7). This approach has strong ties to kernel methods [7] used in
machine learning. In particular, one performs the smoothing in a non-linearly transformed feature
space, defined by the non-linear mapping function ϕ(x). The neighborhood structure or Laplacian is
determined based on the distances between the non-linearly mapped features di,j = ‖ϕ(xi)−ϕ(xj)‖2,
rather than the conventional distance measure ‖xi−xj‖2. The cost functions to solve for the images
using these models only depend on inner-products between the features 〈ϕ(xi), ϕ(xj)〉; the kernel-
trick that is widely used in machine learning can be used to come up with computationally efficient
algorithms that does not require the explicit computation of the non-linear mapping ϕ that is
expensive to compute.

Recently, some authors have considered the use of deep generative models to account for the
manifold structure of images in a dynamic dataset [74, 75]. Rather than considering a non-linear
lifting of the data to a feature space, these approaches assume that the images are non-linear
mappings of low-dimensional latent vectors that capture the variability in the data. The latent
vectors capture the variability in the dynamic dataset (e.g. cardiac and respiratory variations). The
latent vectors as well as the non-linear mapping are learned from the undersampled measurements
using back-propagation. Since these models is to synthesize the images as non-linear mappings
of low-dimensional latent vectors, these approaches are called as synthesis or generative manifold
methods (see Fig. 8). By contrast, the earlier kernel methods that perform non-linear lifting of
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C. Unsupervised learning using Deep Image Prior

The recent work of DIP uses the structure of the network
as a prior [32], enabling the recovery of images from ill-
posed measurements without any training data. Specifically,
DIP relies on the property that CNN architectures favor image
data more than noise. The regularized reconstruction of an
image from undersampled and noisy measurements is posed
in DIP as

{✓⇤} = arg min
✓

kA(x) � bk2 such that x = G✓[z] (6)

where x = G✓⇤(z) is the recovered image, generated by the
CNN generator G✓⇤ whose parameters are denoted by ✓. Here,
z is the random latent variable, which is chosen as random
noise and kept fixed.

The above optimization problem is often solved using
stochastic gradient descent (SGD). Since CNNs are efficient in
learning natural images, the solution often converges quickly
to a good image. However, when iterated further, the algorithm
also learns to represent the noise in the measurements if
the generator has sufficient capacity, resulting in poor image
quality. The general practice is to rely on early termination to
obtain good results. This approach was recently extended to
the dynamic setting by Jin et al. [33], where a sequence of
random vectors was used as the input.

III. DEEP GENERATIVE STORM MODEL

We now introduce a synthesis SToRM formulation for the
recovery of images in a time series from undersampled data
(see Fig. 1.(b)). Rather than relying on a non-linear mapping
of images to a low-dimensional subspace [10] (see Fig. 1.(a)),
we model the images in the time series as non-linear functions
of latent vectors living in a low-dimensional subspace.

A. Generative model

We model the images in the time series as

xi = G✓(zi), i = 1, .., M, (7)

where G✓ is a non-linear mapping, which is termed as the
generator. Inspired by the extensive work on generative image
models [32], [36], [37], we represent G✓ by a deep CNN,
whose weights are denoted by ✓. The parameters zi are the
latent vectors, which live in a low-dimensional subspace. The
non-linear mapping G✓ may be viewed as the inverse of the
image-to-latent space mapping ', considered in the SToRM
approach.

We propose to estimate the parameters of the network
✓ as well as the latent vectors zi by fitting the model to
the undersampled measurements. The main distinction of our
framework with DIP, which is designed for a single image,
is that we use the same generator for all the images in
the dynamic dataset. The latent vector zi for each image is
different and is also estimated from the measurements. This
strategy allows us to exploit non-local information in the
dataset. For example, in free-breathing cardiac MRI, the latent
vectors of images with the same cardiac and respiratory phase
are expected to be similar. When the gradient of the network is
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Fig. 1. Illustration of (a) analysis SToRM and (b) generative SToRM. Analysis
SToRM considers a non-linear (e.g. exponential) lifting of the data. If the
original points lie on a smooth manifold, the lifted points lie on a low-
dimensional subspace. The analysis SToRM cost function in (5) is the sum
of the fit of the recovered images to the undersampled measurements and the
nuclear norm of the lifted points. A challenge with analysis SToRM is its
high memory demand and the difficulty in adding spatial regularization. The
proposed method models the images as the non-linear mapping G✓ of some
latent vectors zi, which lie in a very low-dimensional space. Note that the
same generator is used to model all the images in the dataset. The number
of parameters of the generator and the latent variables is around the size of a
single image, which implies a highly compressed representation. In addition,
the structure of the CNN offers spatial regularization as shown in DIP. The
proposed algorithm in (13) estimates the parameters of the generator and the
latent variables from the measured data. A distance regularization prior is
added to the generator to ensure that nearby points in the latent subspace are
mapped to nearby points on the manifold. Similarly, a temporal regularization
prior is added to the latent variables. The optimization is performed using
ADAM with batches of few images.

bounded, the output images at these time points are expected
to be the same. The proposed framework is hence expected to
learn a common representation from these time-points, which
are often sampled using different sampling trajectories. Unlike
conventional manifold methods [8], [10], [12], the use of the
CNN generator also offers spatial regularization.

It is often impossible to acquire fully-sampled training data
in many free-breathing dynamic imaging applications, and
a key benefit of this framework over conventional neural
network schemes is that no training data is required. As
discussed previously, the number of parameters of the model
in (7) is orders of magnitude smaller than the number of
pixels in the dataset. The dramatic compression offered by the
representation, together with the mini-batch training provides a
highly memory-efficient alternative to current manifold based
and low-rank/tensor approaches. Although our focus is on
establishing the utility of the scheme in 2-D settings in
this paper, the approach can be readily translated to higher
dimensional applications. Another benefit is the implicit spatial
regularization brought in by the convolutional network as
discussed for DIP. We now introduce novel regularization
priors on the network and the latent vectors to further constrain
the recovery to reduce the need for manual early stopping.

Figure 8: Illustration of the two classes of manifold methods. The early analysis methods [57, 47, 69, 49, 59, 45,
48, 10, 67, 1] rely on learning the Laplacian matrix, which captures the neighborhood structure of images in a non-
linearly transformed domain. The non-linear mapping ϕ determines the lifting, and hence is an integral part of the
algorithms. By contrast, the recent deep generative models [74, 75] represent each image in the time series as non-
linear mappings of low-dimensional latent variables, which capture the natural variability in the data. Since these
approaches synthesize the images, they are termed as synthesis models. The parameters of the deep generator Gθ as
well as the latent vectors that represent each image zi are learned from the undersampled k-t space measurements.

images to a feature domain, where the smoothness is imposed, are termed as analysis methods.

5.1. Analysis manifold methods

The recovery of a smooth multidimensional function f : Rm → Rn has been considered in
machine learning [7]. For example, when one is considering patches, n = p2 is the number of pixels
in the patch. Because of the redundancy of the patches, they can be viewed as a function of low-
dimensional latent vectors denoted by rk: xk = f(rk). Here, f is a non-linear function, and rk are
as the co-ordinates that are unknown. We note that as the latent co-ordinates r is varying in a
m-dimensional space (domain), the function values vary on a smooth surface in high dimensional
space (n >> m). The recovery of the function f from the fully-sampled data points xk is posed as
the Tikhonov regularized problem [7]:

f∗ = arg min
f,{rk}

‖f(rk)− sk‖2 + η

∫
M
‖∇f‖2dr, (40)

where the second term is the smoothness of the function onM. In the discrete setting, the regular-
ization term is approximated as a weighted sum of differences between the points [7]

f∗ = arg min
f ,{rj}

‖f(rk)− sk‖2 + η

N∑
i=1

N∑
i=1

Wi,j‖f(ri)− f(rj)‖2, (41)

where the weights are selected based on the proximity of the points on the manifold. A simple choice
of weights is specified by [7]:

Wi,j = exp

(
−‖f(ri)− f(rj)‖2

σ2

)
. (42)

The weights capture the geometry of the manifold. Specifically, closer point pairs on M will
have higher weights, while distant point pairs will have smaller weights. We will discuss more
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sophisticated approaches for the estimation of weights in Section 5.1.2. We note that the weighted
sum can be expressed in a compact form as

N∑
i=1

N∑
i=1

Wi,j‖f(ri)− f(rj)‖2 = trace
(
XLXT

)
.

Here, X =
[
x1 . . . xN

]
=
[
f(r1) . . . f(rN )

]
and L is the Laplacian matrix L = D−W, which

captures the structure of the manifold and D is a diagonal matrix D = diag(
∑
j Wi,j). See Fig. 7

for an illustration of the structure of this matrix. Thus, the optimization scheme in (41) can also be
written as

X = arg min
X
‖X− S‖2 + η trace

(
XLXT

)
(43)

and S =
[
s1 . . . sN

]
. The above discrete approximation of the manifold can be viewed as a graph,

where the structure of the graph is captured by the graph Laplacian L. Signal processing on graphs
is extensively studied, and the Laplacian matrix is central to most of the methods [55].

5.1.1. Relation to factor models and binning based approaches

One can perform the eigen decomposition of the known Laplacian matrix L as

L = ΦΛΦT (44)

It is well known that the eigen functions (columns of Φ) are basis functions of functions on M,
analogous to Fourier exponentials being eigen functions of Laplacian operator in Euclidean space
[55]. In particular, eigen functions corresponding to smaller eigen values of L correspond to smooth
functions onM; the eigen values are analogous to the frequency or roughness of the function. Since
Φ is an orthogonal basis analogous to Fourier transform, one can express the signal matrix as

X = ΦWT , (45)

where U can be viewed as the coefficients. Using this property, one can rewrite (43) as

W∗ = arg min
W
‖ΦWT − Z‖2 + η trace

(
WΛWT

)︸ ︷︷ ︸∑N
i=1 λi‖wi‖2

(46)

Note that (45) is similar to the representation of the signal using dictionaries; each signal k
is expressed as the linear combination of ui with the weights specified by the kth row of W. The
weights are expected to be similar for points closer on the manifold; the active Φ basis vectors in each
manifold neighborhood provides a local linear representation (similar to local PCA) on the manifold.
Since the eigen values λi can be viewed as the frequency or the measure of roughness, one can
attenuate the high frequency components on the manifold by increasing η, thus obtaining smoother
signals on the manifold. For computational efficiency, one may also truncate the representation by
ignoring the basis functions corresponding to higher eigen values.

When the images may be grouped into r distinct clusters with minimal inter-group similarity, the
Laplacian matrix can be thought of as a block diagonal matrix. In particular, the off-diagonal entries
of the matrix corresponding to the images from two different clusters are zero. In this case, it is
well known that the matrix will have r zero eigen values. The eigen vectors ϕi corresponding to the
zero eigen values will be the indicator vectors of the clusters. If the remaining eigen values are much
higher, one can approximate (46) as the independent recovery of each cluster from the measured
data. We note that the hard binning approach pursued in GRASP or X-D GRASP framework [18]
bins the data to different clusters, followed by the recovery of the bins. Thus, the hard binning-
based approaches may be viewed as a special case of the manifold method, where the inter-cluster
similarities can be ignored. When the non-zero eigen values are not ignored in the reconstruction,
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the additional eigen functions (corresponding to non-zero eigen values) capture the variability of the
images within each cluster. The reconstruction can thus be viewed as a local PCA approach, where
each cluster is represented independently by its basis set. As discussed before, the BM3D approach
pursues a similar approach, where the patches in the image are clustered into different groups.

5.1.2. Estimation of manifold Laplacian

As discussed previously, L captures the manifold structure. The recovery heavily depends on the
specific choice of the Laplacian matrix. Several methods were introduced to estimate the Laplacian
from its noisy and possibly undersampled data.
Proximity based methods: Early methods directly estimated the weight matrix based on the prox-
imity of the function values [7, 12, 3, 57]. For instance, they are chosen as

Wi,j ≈ exp

(
−‖si − sj‖2

σ2
s

)
. (47)

We note that W is also termed as the kernel matrix. The BM3D approach [16, 17] in can be viewed
as a hard-clustering setting

Wi,j =

{
1 if ‖si − sj‖2 ≤ σ2

s

0 else
(48)

Note that the Gaussian choice in (47) will be equivalent to hard-clustering if the clusters are well-
separated. In this case, the L matrix will have a block structure with no interactions between
clusters. In contrast to the hard-clustering approach, the Gaussian choice is appropriate when the
points are well-distributed on the manifold.
Alternating minimization schemes: In many cases (e.g. signals are patches in an image), the signals
xi are either noisy or jointly measured using a single rank deficient linear operator E. In this case,
the estimation of the weights from aliased data using (47) often results in poor results. An approach
to overcome this challenge is to post the recovery as the minimization of the cost function [70, 71]:

X∗ = arg min
X
‖E(X)− S‖2 + λ

N∑
i=1

N∑
i=1

η
(
‖xi − xj‖

)
(49)

Here, η(·) is a non-convex function of its argument (eg., `p; p < 1 norm). The non-convexity of the
regularization term will encourage each i to be influenced by signals in the immediate proximity,
while being minimally impacted by far away points. The above criterion can be minimized by
alternating between the estimation of the weights (47) and the recovery of the signals (41). Homotopy
continuation schemes that start with a quadratic or convex η, and gradually change it to the desired
one during iterations, have been introduced to encourage the convergence to the global minimum
with improved results in compressed sensing applications.
Sparse optimization: The work in [48, 67] proposes to estimate the Laplacian by assuming the weight
matrix (and equivalently the Laplacian entries) to be sparse. Specifically, it aims to express each
signal i as a sparse linear combination of the other signals. The intuition is that each signal on the
manifold can be expressed as a sparse linear combination of its neighbors.

W∗
i,j = arg min

Wi,j ;
∑

j Wi,j=1
‖si −

∑
j

Wi,jsj‖2 + λ
∑
j

‖Wi,j‖`1 (50)

This approach is reported to yield improved results over proximity based methods [7, 12, 3, 57] in
(47). This approach has similarities to local linear embedding [65], where each signal is expressed
as a weighted linear combination of its neighbors.
Kernel based projection: Note that the approach in (46) approximates the signals using the eigen
vectors corresponding to the lowest eigen values of the Laplacian matrix to approximate/denoise
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them. This is equivalent to approximating the signals using eigen vectors corresponding to the
highest eigen values of the normalized kernel matrix. Kernel PCA is widely used in machine learning
to approximate signals living on manifolds. The eigen values of kernel matrix is observed to decay
rapidly when the signals are living on smooth manifolds or clustered [6], which is used to denoise
the signals.

Early manifold approaches in MRI relied on explicit polynomial features [69, 49]. Specifically,
polynomial features of the signals were computed, followed by performing PCA. Once the features
are projected to a lower dimensional subspace, these methods use the explicit inversion formula
to obtain the pre-image available for polynomial kernels. This approach demonstrated improved
performance over PCA. A challenge with this direct approach is the difficulty to apply it to large
images, where the explicit lifting is not possible.
Kernel PCA regularization: The low-dimensional structure of the weight matrix is explicitly used
for the joint estimation of the Laplacian matrix and the signals from undersampled measurements
in [59]. In particular, the kernel matrix is exactly low-rank when the manifold M ∈ RN < is the

zero level set of a finite linear combination of basis functions ψ(x) =
∑B
k=1 ck ϕk(x).

M = {x|
∑

ck ϕk(x) = 0}. (51)

Here ϕk(r) are basis functions1 (e.g. polynomials, exponentials) that span the high dimensional
space.

Φ(X) =


ϕ1(x1)

...
ϕS(x1)


︸ ︷︷ ︸

φ(r1)

. . .

ϕ1(xN )
...

ϕS(xN )


︸ ︷︷ ︸

φ(xN )

 (52)

is low rank. The mapping from the original points to the feature vectors can be viewed as a non-linear
lifting. The low-rank structure of this matrix implies that the lifted points lie in a low-dimensional
subspace. The lifted points can hence be viewed as low-dimensional latent vectors that compactly
represent the signals. The algorithms that use the low-rank property of the feature vectors may be
viewed as structured low-rank algorithms with the non-linear mapping φ. Following the approach
in Section 4, we recover the signals on the manifold from its linear measurements as

X∗ = arg min
X
‖E(X)− S‖2 + λ‖Φ(X)‖∗. (53)

The above problem cannot be solved in practical applications since the mapping φ(x) is high dimen-
sional. Hence, one can use the kernel-trick that allows the direct computation of the inner-product
of the high-dimensional feature maps

〈φ(ri), φ(rj)〉 = κ(xi − xj) (54)

as non-linear functions of the image differences xi−xj without the direct computation of the feature
maps, which is computationally challenging. Here, κ is a function that is dependent on the specific
feature maps.

The kernel-trick is widely used in machine learning to translate algorithms that depend on inner-
products to feature spaces. In particular, by simply changing the inner-products by kernel functions.
We note that the IRLS approach described in Section 4.2 only depends on the inner-products of the
features, unlike many of the nuclear norm minimization algorithms. This property can be made use
of this property to solve (53), which alternates between

X∗ = arg min
X
‖E(X)− S‖2 + λ‖Φ(X) κ(X)−1‖2F . (55)

1The basis functions may also be chosen as a subset of the Mercer decomposition of the kernel function.
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and the evaluation of the kernel matrix κ(X):

(κ(X))i,j = 〈φ(ri), φ(rj)〉 = κ(ri, rj) (56)

This approach eliminates the need for the explicit evaluation of the high dimensional feature maps
φ(fi). Since the regularization functional in (55) is non-quadratic, this term is solved using steepest
descent; this approach is shown to be similar to the alternating strategy in (5.1.2) (i.e, alternation
between (47) and the recovery of the signals (41)), where (47) is replaced by

L = K(X)�K(X)−
1
2 , (57)

where � denotes point wise multiplication of the matrices.

5.1.3. Image recovery assuming smooth patch manifold

Non-local means is an early and powerful algorithm for patch based image denoising [12, 3]. It
estimates the Laplacian matrix from noisy data as in (47), followed by (41) to recover the denoised
signals. Note that the evaluation of the p2 × p2 patch matrix as well as its use in (41) is computa-
tionally expensive. Several assumptions on the structure of the weight matrix (e.g block diagonal
assuming that the similar patches are in the spatial neigborhood) have been introduced to speed
up the computations. The BM3D approach is also related, when the structure is determined by the
Euclidean proximity of the patches.

Recently, some researchers have proposed to use the decomposition in (45) to further improve
the denoising performance [72]. Each of the columns of V are termed as non-local basis functions,
which shows the similarity between the regions. The corresponding U basis functions are termed
as local basis functions. The spatial variation of the non-local basis functions (coefficients of the
expansion) allows the subspace to be adapted to each patch, depending on the local neighborhood
on the manifold.

When the recovery of image from undersampled Fourier measurements are considered, an al-
ternating minimization scheme that minimizes (49) is adopted [71, 70]. By making use of the
redundancy between the patches, this approach is observed to offer good image quality during
reconstruction. A similar strategy, where similarity between image patches in dynamic MRI re-
construction is used in PRICE [44], which offers implicit motion compensation. This approach has
conceptual similarities to [13] and the kernel PCA approach in the patch setting [66]. Considering
the improved performance offered by kernel PCA methods used in the dynamic MRI setting, we
expect better performance with this scheme in the patch setting.

5.2. Synthesis Manifold Recovery

The main focus of synthesis manifold approaches us to capitalize on the power of deep convolu-
tional neural networks (CNN) to introduce a memory efficient generative or synthesis formulation.
These methods assume the image volumes in the dataset are smooth non-linear functions of a few
latent variables, i.e., x(t) = Gθ(zt), where zt are the latent vectors in a low-dimensional space. x(t)
is the tth generated image frame in the time series. This explicit formulation implies that the image
volumes lie on a smooth non-linear manifold in a high-dimensional ambient space (see Fig 8.(b)). A
subject-specific deep convolutional neural network (CNN) to represent the non-linear transformation
Gθ in Fig. 8. The parameters of the generator θ as well as the low- dimensional latent vectors zi
are jointly estimated only from the undersampled measurements. This approach is different from
traditional CNN approaches that require extensive fully sampled training data. We penalize the
norm of the gradients of the non- linear mapping to constrain the manifold to be smooth, while
temporal gradients of the latent vectors are penalized to obtain a smoothly varying time-series. The
proposed scheme brings in the spatial regularization provided by the convolutional network and
offers a significantly compressed representation of the data. Specifically, the number of parameters
required by the model (CNN weights and latent vectors) are several orders of magnitude smaller than

21



9

Cardiac waveform Weight patterns
Respiratory waveform

(b) SToRM: Two-Step (a) XD-GRASP

Fig. 5: Comparison of (a) XD-GRASP against (b) SToRM:Two-Step. For direct comparison of the methods, we rearrange the images
obtained using SToRM into respiratory and cardiac phases (bottom-right), identified by the XD-GRASP binning approach, which can be
compared to XD-GRASP reconstructions (bottom-left). We also rearrange the XD-GRASP recovered frames to form a temporal profile in the
top row. Specifically, we construct a time series by selecting the XD-GRASP frames corresponding to the identified cardiac and respiratory
phases. We observe that some of the cardiac/respiratory phases are not well sampled in XD-GRASP due to variability in the breathing cycles,
resulting in blurring and aliasing artifacts. Please see the phases outlined by green boxes. By contrast, our soft-binning strategy exploits
the similarity between the phases along the time series to reduce these artifacts. The weight patterns for the two frames indicated by the
yellow and red arrows are shown in the top row. We note that the weights are high whenever the frames are similar to the chosen frame; the
algorithm combines the information in these similar frames to obtain high-resolution reconstructions.We note that XD-GRASP is binning
the data to different cardiac and respiratory bins. The averaging of motion within the bins may cause respiratory blurring, which may be
the reason for difference in the hepatic vasculature. By contrast, the soft-binning offered by the proposed scheme minimizes the respiratory
blurring, thus offering more sharper reconstructions.

(end-diastole, mid-frame, end-systole) from the image series are shown. We note that the proposed scheme provides similar
visual quality to the breath-held acquisitions. The experiments also show that the visual quality of the SToRM:Two-Step scheme
is quite comparable to that of StoRM: Self Nav.

We compare the proposed scheme against competing methods on a numerical phantom in Fig. 3 and Table I. Fig. 3 shows
the visual comparison between the proposed SToRM:Two-Step, low-rank, SToRM: SENSE, compressed sensing (CS), kt-SLR
and SToRM: Self-Nav methods. We observe that the proposed scheme significantly reduces the spatial and temporal blurring
compared to the low-rank scheme CS and kt-SLR, which demonstrates the ability of the kernel low-rank algorithm in capturing
non-linear redundancies. These visual observations are also confirmed by the quantitative results in Table I. We have used four
metrics (SER, SSIM, HFEN, GPC) to evaluate the performance. We optimized the parameters for one dataset. We observe that
the performance of the SToRM:Two-Step scheme is significantly better than other methods, while it is marginally higher than
SToRM:Self-Nav.

We have also investigated the impact of different Laplacian estimation strategies as shown in the supplementary figure
S1. Results show that the image quality is not different notably, however, we get lower computational complexity with the
low-resolution approach, as mentioned in the section III-C.

We qualitatively compare the proposed algorithm with competing methods on six single-slice experimental datasets in Fig
4-6. The visual comparison against the low-rank and the SToRM:SENSE algorithm on one of the datasets is shown in Fig 4.

(a) Similarity to XD-GRASP

13

Fig. 9: Binning into cardiac and respiratory phases. We demonstrate that the reconstructed ungated image series can easily be converted to
a gated series of images if desired. For this purpose, the 2nd and 3rd eigen-vectors of the estimated Laplacian matrix are used as an estimate
of the respiratory and cardiac phases respectively. The images can then be separated into the desired number of cardiac and respiratory bins.
Here, we demonstrate this on a dataset that has been separated into 8 cardiac and 4 respiratory phases. Representative images from these
bins have been shown in the figure. Similar results on an additional dataset are available in the supplementary material.

Fig. 10: Comparison to breath-held scheme. We demonstrate that
b-SToRM produces images of similar quality to clinical breath-held
scans, in the same acquisition time. Note that there are differences
between the free-breathing and breath-held images due to variations
in contrast between TRUFI and FLASH acquisitions, and also due
to mismatch in slice position. However, the images we obtain are
of clinically acceptable quality. Moreover, unlike the breath-held
scheme we reconstruct the whole image time series (as is evident
from the temporal profile). This can provide richer information, such
as studying the interplay of cardiac and respiratory motion.
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(b) Cardiac and Motion states using Manifold embedding

Figure 9: Illustration of Smoothness Regularization on Manifolds (STORM) framework and its similarity to XD
GRASP for the recovery of free-breathing and ungated MRI data. XD-GRASP bins the data to different car-
diac/respiratory phases, followed by the joint recovery of the images. By contrast, STORM estimates a Laplacian
matrix that has conceptual similarities to the XD-GRASP approach. The manifold Laplacian is estimated from the
k-space navigators using (55) and (57). The reconstructed data is compared against self-gated XD-GRASP recon-
struction of the same data. (b) uses the eigen vectors of the Laplacian matrix to bin the reconstructed data into
cardiac and respiratory phases. This figure is copied from [59] with permission from IEEE.

required for the direct representation of the images. The compact model proportionately reduces the
number of measurements needed to recover the images. In addition, the compression also enables
algorithms with much smaller memory footprint and computational complexity. The main benefit
of the proposed scheme is the improvement in image quality and the orders-of-magnitude reduction
in memory demand compared to traditional manifold models. The recovery from the measured data
is posed as an optimization problem, where the latent variables zi and the CNN parameters θ are
obtained as the minimum of the cost function:

C(z, θ) =

N∑
i=1

‖Ai (Gθ[zi])− b‖2︸ ︷︷ ︸
data term

+λ1 ‖JzGθ(z)‖2︸ ︷︷ ︸
distance regularization

+λ2 ‖∇tzt‖2︸ ︷︷ ︸
latent regularization

The first term is the data consistency term, which compares the measurements of the generated
images with the k-t space data. The second term is a regularization penalty on the CNN parameters,
which minimizes overfitting, while the last term is a smoothness penalty of the latent vectors. In
particular, the last term encourages smooth variation of the latent vectors, capitalizing on the smooth
nature of cardiac and respiratory motion.

5.3. Application to Dynamic MRI

The manifold structure of images in a dynamic time series is used to recover them from under-
sampled data [58, 59, 57, 45]. In particular, the images in a free breathing cardiac dataset can be
viewed as non-linear functions of the cardiac and respiratory phases; the images can be assumed as
points on a low-dimensional surface.

A navigated strategy was used in [57]. In particular, each image is sampled by a sampling pattern
that includes a common set of k-space locations, termed as navigators. Specifically, one would obtain
Z = BX, where B is the sampling operator corresponding to the k-space navigators. In this case,
one can approximate the W matrix as

Wi,j ≈ exp

(
−‖zi − zj‖2

σ2
z

)
. (58)
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that the proposed (d = 40) reconstructions exhibit less blurring and fewer artifacts when compared to SToRM150 and competing methods.
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Figure 10: Comparison of Analysis and Deep-Synthesis SToRM approaches, applied to free breathing and ungated
cardiac MRI. The improved regularization offered by synthesis manifold approach enables a significant reduction in
data demand. The synthesis SToRM approach from 7.5 seconds of data is able to offer reconstructions that are similar
to analysis STORM reconstructions from 40 seconds of acquisition. The results are significantly better than low-rank
methods.

Specifically, the navigators are expected to indicate the structure of the manifold.
A challenge with the direct implementation of the manifold-aware recovery in (43) in the multi-

dimensional setting is its high computational complexity. The factorization approach is considered
in (46) allows to significantly reduce the computational complexity and memory demand of the al-
gorithm [59]. In practice, 20-30 basis functions were observed to recover the dataset, which offers
a 20-30 fold reduction in the memory demand. This approach also estimated the Laplacian matrix
from the navigators using the kernel low-rank algorithm was used to estimate the Laplacian in [59],
which offered improved performance over [57].

When navigators are not available, the formulation in (49) allows to jointly estimate the Laplacian
and the signals from the data itself [45]. A key benefit of this approach is that one can customize the
Laplacian to different spatial regions. In particular, [45] splitted the images to patches, each with
a different Laplacian. The kernel low-rank algorithm (53) is used instead of (49) to estimate the
Laplacian in [1]. The iterative strategies including (49) and (53) are reported to yield far superior
results compared to the proximity based methods. More studies are needed for the comparison of
the iterative methods for the Laplacian matrix [1]. See Fig. 9 for an illustration of the manifold
recovery. The comparison of analysis and synthesis manifold methods are shown in Fig. 5.3. The
results show that the generative STORM approach facilitate a significant reduction in acquisition
time compared to the analysis counterparts.

6. Software

The MATLAB software associated with this paper is available at
https://github.com/sajanglingala/data adaptive recon MRI
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7. Summary

This chapter reviewed several learning-based models that are used in MR image reconstruction,
building upon compressed sensing methods in Chapter 6 and low-rank methods in Chapter 9. All
the approaches reviewed in this chapter make use of the manifold structure of sub-structures (e.g.
patches, pixel time series, images in the time series) of the dataset. The models differ in the represen-
tation of the data manifold, resulting in algorithms that rely on matrix factorization. In particular,
the sub-regions are used to populate the columns of a structured matrix, which is factorized into
two sub-matrices. Even though these approaches resemble low-rank methods reviewed extensively in
Chapter 9, the main distinction is the nature of the priors used on the factors. The priors encourage
the learning of basis functions and coefficients with specific properties, which often provide improved
approximations of the data manifold. The matrix structure and basis functions promote the sharing
of information between sub-regions of the dataset, thus facilitating the recovery of the dataset from
highly undersampled data.
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