Dynamic MRI using Smoothness Regularization on Manifolds (SToRM)

Computation Biomedical Imaging Group (CBIG) https://cbig.iibi.uiowa.edu

Mathews Jacob

THE UNIVERSITY OF LOWA

Main thrust: free breathing cardiopulmonary imaging

Free breathing and ungated cardiac/lung MRI

Breath-held cardiac CINE MRI

Long breath-hold durations: challenging for several patients

 Accelerated breath-held CINE Compressed sensing, Robust PCA, Deep Learning Methods

Lustig et al, Sandino et al 2020, Schlemper et al, 2018

 Self gating FB and UG methods: motion resolved recovery XD-GRASP: Feng et al, MRM 2016, Multi-tasking: Christodolou, 2016, PROST: Bustin et al, 2020

Bandlimited assumption to recover the gating signals

Vulnerable to bulk motion

Slice by slice recovery: difficult to merge the information

• Subspace methods

Extreme MRI: Ong et al, MRM 2020, k-t SLR: Lingala et al, 2011

Basis functions estimated from navigators or using nuclear norm minimization

Linear representation: tradeoff between number of basis functions and data

Manifold structure of FB & ungated cardiac MRI

FB & UG images

Images: points in high dimensional space Smooth function of cardiac & respiratory phase

How do we use the manifold model to recover the images?

Non-linear mapping: linear subspace

Modeling with subspaces inefficient

SmooThness Regularization on Manifold (SToRM)

Poddar, Jacob, TMI 2016, TCI, 2019

Ahmed et al, TMI, 2020

2. Difficult to add spatial regularization!

3. Difficult to extend to high dimensions!

 \mathscr{G}_{θ}

g-SToRM: dual approach of SToRM

Images: nonlinear mapping of latent vectors

Learn generator and latent vectors from data

•Generate images on demand

Generative SToRM: learning a generative model from data

Compact model: image generated by *g*

$$\rho_i = \mathcal{G}_{\theta}[z_i]; \quad i = 1, \dots$$

Learn unknown parameters from measured data

$$\{\mathbf{Z}, \theta\} = \arg\min_{\mathbf{Z}, \theta} \sum_{i} \|\mathscr{A}\|$$

- ,N
- $\mathcal{I}_i\left(\mathcal{G}_{\theta}[z_i] \mathbf{b}_i\right) \|^2$
- Generalization of DIP: multi-image/ensemble of measurement schemes

Zou et al, Generative STORM: TMI 21

Learn sensible mappings

Distance in latent space should match distance on manifold

dist_{*M*} $(G[\mathbf{z}_1], G[\mathbf{z}_2]) \approx ||\mathbf{z}_1 - \mathbf{z}_2||$

Relation between distances

 $\operatorname{dist}_{\mathscr{M}}\left(G[\mathbf{Z}_{1}], G[\mathbf{Z}_{2}]\right) \leq \|\mathbf{Z}_{1} - \mathbf{Z}_{2}\| \|J_{z}(\mathscr{G})\|_{F}$

High Jacobian $J_{z}(\mathcal{G})$: lack of correspondence between spaces

Add regularization term

$$\{\mathbf{Z}, \theta\} = \arg\min_{\mathbf{Z}, \theta} \sum_{i} \|\mathscr{A}_{i}(\mathscr{G}_{\theta}[\mathbf{Z}_{i}])\|$$

 $-\mathbf{b}_{i} \|^{2} + \lambda_{1} \|J_{z}(\mathscr{G}_{\theta}[\mathbf{Z}])\|_{F}^{2} + \lambda_{1} \|\nabla_{t}\mathbf{Z}\|_{F}^{2}$ $\underbrace{ \mathsf{network reg.}}_{\text{network reg.}} \quad |\mathsf{atent reg.}|^{2}$

Comparison with competing methods

Scan time: 40 s/slice

Scan time: 12 s/slice

Methods	SToRM500	SToRM150	Propsed	Time-DIP
SER (dB)	NA	17.3	18.2	16.7
PSNR (dB)	NA	32.7	33.5	32.0
SSIM	NA	0.86	0.89	0.87
Brisque	35.2	40.2	37.1	42.9
Time (min)	47	13	17	57

Scan time: 12 s/slice

Scan time: 12 s/slice

Zou et al, Generative STORM: TMI 21 Zou et al, Generative STORM: ISBI 21 Best paper award

Results

Zou et al, Generative STORM: TMI 21

Zou et al, Generative STORM: ISBI 21 Best paper award

Dynamic MRI using SToRM

- Generative SToRM (g-SToRM) model
 - Brief review of SToRM
 - g-SToRM for single slice dynamic MRI
- Multi-slice dynamic MRI using g-SToRM
 - Background
- MoCo-SToRM
 - Motion-compensated image recovery
 - MoCo-SToRM

Joint alignment and reconstruction of multi-slice dynamic MRI

Multi-slice free-breathing acquisition

Multi-slice acquisition is preferred in cine MRI over 3D Good myocardium to blood-pool contrast because of in-flow effects Higher temporal resolution Current approaches: independent recovery of slices Different breathing patterns and heart-rate Challenges Cannot exploit inter-slice redundancies Need to align the slices/phases post-reconstruction

Latent space alignment: multi-slice to 3D

Idea: Jointly learn a 3D-generative model from multi-slice data

Each slice will have its own latent vectors that capture cardiac/respiratory motion

Post-recovery, excite with the latent vectors of any slice to create aligned volume time series

Challenge

Different slices may have different latent distributions

(d) Latent vectors obtained by G-SToRM:MS

(b) Alignment and recovery of eight slices using G-SToRM

Poor reconstructions !!

Variational formulation: motivated by VAE

$$\mathcal{C}_{\boldsymbol{\theta}}[z_{i,j}] - \mathbf{b}_i \left(\| \boldsymbol{2} + KL(\boldsymbol{q}(z_{i,j}) \| \boldsymbol{p}(z)) \right)$$

Gaussian prior

Alignment of latent spaces: KL divergence penalty

(c) Latent vectors obtained by V-SToRM:MS

(d) Latent vectors obtained by G-SToRM:MS

Alignment of latent spaces: KL divergence penalty

(a) Alignment and recovery of eight slices using V-SToRM

Joint alignment and recovery: 1minute/8 slices

Zou et al., <u>https://arxiv.org/abs/2101.08196</u>

Application to multi-slice speech MRI

Time, t (a) I2 SToRM

Need high temporal resolution: 2D multi-slice acquisition preferred over 3D

Time, t

(b) Deep generative SToRM

R. Rushdi, Q. Zou, M. Jacob, S. Lingala, ISMRM 2022

Application to multi-slice speech MRI

za-na-za-loo-lee-la

one-two-three-four-five

R. Rushdi, Q. Zou, M. Jacob, S. Lingala, ISMRM 2022

Dynamic MRI using SToRM

- Generative SToRM (g-SToRM) model
 - Brief review of SToRM
- g-SToRM for single slice dynamic MRI Multi-slice dynamic MRI using g-SToRM
 - Background
 - Joint alignment and reconstruction of multi-slice dynamic MRI
- MoCo-SToRM
 - Motion-compensated image recovery
 - MoCo-SToRM

Extension to motion-compensated image recovery

Motion-compensated recovery: combine information from different motion states More data efficient

Deformations: generated by a CNN, when driven by time varying latent vectors

Time varying motion fields

Learned latent vectors

 $\Phi_t(\mathbf{r}) = \mathscr{G}_{\theta}[z(t)]$

z(t)

Image at each time instant: Deformed version of a template *f*

Static Image

 $f(\mathbf{r})$

<u>Deformations</u>: generated by a CNN, when driven by time varying latent vectors

Image at each time instant: Deformed version of a template *f*

 $f(\mathbf{r})$

<u>Reconstruction:</u> joint recovery of f(r), θ , and z(t)

- <u>Deformations</u>: generated by a CNN, when driven by time varying latent vectors

MoCO-STORM vs XD-GRASP vs iMoCO: normal subject

Zou et al, MoCo-SToRM: http://arxiv.org/abs/2111.10887

MoCO-STORM: Maximum intensity projections

Robustness to bulk motion artifacts

Zou et al, MoCo-SToRM: http://arxiv.org/abs/2111.10887

Benefit of bulk motion compensation

Zou et al, MoCo-SToRM: http://arxiv.org/abs/2111.10887

Motion resolved recon.

Extreme MRI

Spatial resolution:1.25x1.25x1.25 Matrix size: 408x183x379 Temporal resolution: 515 ms

Copied from the "Extreme MRI" paper.

MoCo-SToRM Matrix size:256x256x256 Temporal resolution: 260 ms

Coughing

Preliminary study: pediatric imaging (NICU subject)

Joint recovery of 256 x 256 x 256 x 10,000 volumes

In collaboration with N. Higano, A. Bates, L. Torres, S. Fain,

Summary of g-SToRM

Images or motion fields: nonlinear mapping of latent vectors

Learn generator and latent vectors from data

•Generate images on demand

