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Main thrust: free breathing cardiopulmonary imaging



Free breathing and ungated cardiac/lung MRI
• Breath-held cardiac CINE MRI

Long breath-hold durations: challenging for several patients

• Accelerated breath-held CINE
Compressed sensing, Robust PCA, Deep Learning Methods

Lustig et al, Sandino et al 2020, Schlemper et al, 2018

• Self gating FB and UG methods: motion resolved recovery

Bandlimited assumption to recover the gating signals
Vulnerable to bulk motion

XD-GRASP: Feng et al, MRM 2016, Multi-tasking: Christodolou, 2016, PROST: Bustin et al, 2020

Slice by slice recovery: difficult to merge the information 

• Subspace methods

Basis functions estimated from navigators or using nuclear norm minimization

Linear representation: tradeoff between number of basis functions and data

Extreme MRI: Ong et al, MRM 2020, k-t SLR: Lingala et al, 2011



Manifold structure of FB & ungated cardiac MRI

…
Time series of images

Similar images are close on 
a manifold but may be far 

apart in time

Smooth function of cardiac & respiratory phase
Images: points in high dimensional space

FB & UG images

How do we use the manifold model to recover the images ?



Points on a circle
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Non-linear mapping: linear subspace

z1 = x2

z2 = y2

Nonlinear transform

Nonlinear transform

𝒢

φ

x2 + y2 � 1 = 0

Points on a line

z1 + z2 � 1 = 0

Modeling with subspaces inefficient



SmooThness Regularization on Manifold (SToRM)
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Poddar, Jacob, TMI 2016, TCI, 2019
Ahmed et al, TMI, 2020

1.Need to store all the images in the time series!


2.Difficult to add spatial regularization!


3.Difficult to extend to high dimensions!



g-SToRM: dual approach of SToRM
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•Images: nonlinear mapping of latent vectors
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Figure 10: Preliminary experiment
confirming the ability of GSTORM to re-
cover free-breathing and ungated car-
diac perfusion MRI data, acquired us-
ing a golden angle stack of star (5
slices) sequence. The three learned la-
tent vectors on the top row captures the
cardiac, respiratory, and contrast vari-
ations in the data. Rows 2-4 corre-
spond to the output of the generator
when only the respiratory (2nd row), car-
diac (3rd row) and contrast latent vec-
tors (4th row) are varied, keeping the oth-
ers fixed. The last row correspond to
images sampled uniformly in time, when
the images would be in different car-
diac/respiratory/contrast phases.

C.4.4.1:Anticipated results: We expect a good match between the pre- and
post-contrast self-gating structural scans with the corresponding g-SToRM
measures. Likewise, we expect good match between the g-SToRM
perfusion metrics and the ones recovered using the pipeline in [114]. Based
on these results [114], we expect the MRI scans to identify the abnormalities
that are visible in HRCT, including reticulation and honeycombing. In particu-
lar, we expect the detected defects in the above lobes to agree well. We also
expect the average PBV measures within the lobes to agree with the CT-PBV.
C.4.4.2:Power analysis: Agreement for presence of defect between MR and
HRCT images on n=20 study participants will be assessed using the Kappa
statistic. Assuming defects are present in 50% of the sample, we can discrim-
inate between slight (Kappa=0.20) and substantial (Kappa=0.75) agreement
at the 0.05 significance level with 0.80 power with this sample size.
C.4.5. Preliminary data
4.5.1: Free breathing UTE acquisition of lung structure: The FB recovery of
lung structure from 5 minutes using MoCo-STORM in the presence of bulk
motion is shown in Fig.8. We will build upon this approach to recover pre and
post-contrast structure and perfusion images.
4.5.2: Lung perfusion metrics: The quantitative perfusion parameters (PBV,
PBF, and MTT) from a normal and an IPF subject are shown in Fig. 9. We
will estimate these parameters from FB acquisitions.
4.5.2: Preliminary data on joint recovery of perfusion kinetics and motion: We
provide preliminary evidence on the utility of g-SToRM in jointly recovering
cardiac and respiratory motion and contrast dynamics of FB cardiac perfu-
sion MRI data in Fig. 10. These results make us confident in recovering
perfusion dynamics in the presence of respiratory motion; we will ignore cardiac motion similar to current litera-
ture (e.g [115,120].) Our ability to acquire lung perfusion preliminary data is currently limited due to funding and
IRB constraints.
C.4.6. Potential pitfalls and alternatives: Based on our preliminary data, we are confident of jointly recovering
perfusion and structure. If the proposed approach cannot resolve the respiratory and perfusion dynamics, we
will train the subjects to perform shallow breathing. In the worst-case scenario of this approach not working,
we will use a 5-minute post-contrast scan to estimate the structure, while a separate breath-held UTE or SPGR
sequence [115] will be used to estimate perfusion data.

C.5: SA.3: Determine the preliminary utility on PH subjects
C.5.1. Background and Rationale: Several vasodilator therapies [121], which can significantly reduce morbidity
and mortality in PH when started early, were approved by the FDA recently. The successful completion of this
aim can result in a free-breathing cardiopulmonary MRI protocol for pre-symptomatic screening. Multiple subject
groups that are at high risk for PH can greatly benefit from this protocol for early detection, differentiation of
patients that benefit from specific therapies, and provide longitudinal assessment of therapy efficacy.
C.5.2. Objectives and Hypothesis: The main objective is to introduce a free-breathing cardio-pulmonary MRI
protocol for the early detection, differentiation, and assessment of therapy efficacy in PH. The hypotheses are that
(a) the proposed free-breathing protocol can provide reliable estimates of cardiac structure, function, T1 maps
within RV and LV wall, lung structure, and perfusion the PH subjects, who have difficulty holding their breath, and
(b) the abnormal measures obtained by the proposed protocol can differentiate PH from RHC normal subjects.
C.5.3. Approach: We will test the above hypotheses using 30 RHC confirmed subjects in the WHO Group 1
PAH, with the imaging performed within two months of RHC and prior to starting pulmonary vasodilator therapy.
Patients will be recruited from the PH clinic at Univ. Iowa and undergo consent by the PH research nurses or Dr.
Gerke. The Univ. Iowa PH program is a national Center of Comprehensive Care (the only one in Iowa), with over
400 patients being followed for PH, with 250 on active advanced therapies. Approximately 2-3 patients per week
undergo RHC. We will exclude subjects with any left heart disease, lung disease, chronic pulmonary emboli, or
other multifactorial cause such as myeloma, renal disease, anemia. We plan to include subjects of all races and

•Learn generator and latent vectors from data



Generative SToRM: learning a generative model from data
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{Z, θ} = arg min
Z,θ ∑

i

∥𝒜i (𝒢θ[zi] − bi) ∥2

Compact model: image generated by 𝒢

ρi = 𝒢θ[zi]; i = 1,..,N

Learn unknown parameters from measured data

Zou et al, Generative STORM: TMI 21

Generalization of DIP: multi-image/ensemble of measurement schemes



Learn sensible mappings
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B. Distance/Network regularization
As in the case of analysis SToRM regularization [8], [10],

our interest is to generate a manifold model that preserves
distances. Specifically, we would like the close-by points in
the latent space to map to similar images on the manifold. With
this interest, we now study the relation between the Euclidean
distances between their latent vectors and the shortest distance
between the points on the manifold (geodesic distance).

We consider two points z1 and z2 in the latent space,
that are fed to the generator to obtain G(z1) and G(z2),
respectively. We have the following result, which relates the
the Euclidean distance kz1 � z2k2 to the geodesic distance
distM (G(z1),G(z2)), which is the shortest distance on the
manifold. The setting is illustrated in Fig. 2, where the
geodesic distance is indicated by the red curve.

Proposition 1. Let z1, z2 2 Rn be two close-by points in the
latent space, with mappings denoted by G(z1),G(z2) 2 M.
Here, M = {G(z)|z 2 Rn

}. Then, the geodesic distance on
the manifold satisfies:

distM
�
G(z1),G(z2)

�
 kz1 � z2kF kJz

�
G (z1)

�
kF . (8)

Proof. The straight-line between the latent vectors is denoted
by c(s), s 2 [0, 1] with c(0) = z1 and c(1) = z2. We also
assume that the line is described in its curvilinear abscissa,
which implies kc0(s)k = 1; 8s 2 [0, 1]. We note that G

may map to the black curve, which may be longer than the
geodesic distance. We now compute the length of the black
curve G[c(s)] as

d =

Z 1

0
krsG [c(s)] kds. (9)

Using chain rule and denoting the Jacobian matrix of G by
Jz , we can simplify the above distance as

d =

Z 1

0
kJz (G) c

0(s)kF ds



Z 1

0
kJz (G) kF kc0(s)kF| {z }

1

ds

= kJz (G[z1]) kF

Z 1

0
ds

| {z }
kz1�z2k

. (10)

We used Cauchy-Schwartz inequality in the second step and in
the last step, we use the fact that JzG (c(t)) = JzG (z1)+O(t)
when the points z1 and z2 are close. Since the geodesic
distance is the shortest distance on the manifold, we have
distM

�
G(z1),G(z2)

�
 d and hence we obtain (8).

The result in (8) shows that the Frobenius norm of the
Jacobian matrix kJzGk controls how far apart G maps two
vectors that are close in the latent space. We would like points
that are close in the latent space map to close-by points on
the manifold. We hence use the gradient of the map:

Rdistance = kJz
�
G(z)

�
k
2
F

(11)

as a regularization penalty. We note that the above penalty
will also encourage the learning of a mapping G such that

the length of curve G(c(t)) is the geodesic distance. We note
that the above penalty can also be thought of as a network
regularization. Similar gradient penalties are used in machine
learning to improve generalization ability and to improve the
robustness to adversarial attacks [36]. The use of gradient
penalty is observed to qualitatively equivalent to penalizing
the norm of the weights of the network.

z1
z2

�(z1)

�(z2)

Geodesic distance

c(t)

� (c(t))

Fig. 2. Illustration of the distance penalty. The length of the curve connecting
the images corresponding to z1 and z2 depends on the Frobenius norm of
the Jacobian of the mapping G as well as the Euclidean distance kz1�z2k2.
We are interested in learning a mapping that preserves distances; we would
like closeby points in the latent space to map to similar images. We hence use
the norm of the Jacobian as regularization prior, with the goal of preserving
distances.

C. Latent vector regularization penalty
The time frames in a dynamic time series have extensive

redundancy between adjacent frames, which is usually capi-
talized by temporal gradient regularization. Directly penalizing
the temporal gradient norm of the images requires the compu-
tation of the entire image time series, which is difficult when
the entire image time series is not optimized in every batch.

We consider the norm of the finite differences between im-
ages specified by krpG[zp]k2. Using Taylor series expansion,
we obtain rpG[zp] = Jz(G[z])rpz+O(p). We thus have

krpG[zp]k ⇡ kJz(G[z])rpzk  kJz(G[z])k krpzk. (12)

Since Jz(G[z]) is small because of the distance regularization,
we propose to add a temporal regularizer on the latent vectors.
For example, when applied to free breathing cardiac MRI, we
expect the latent vectors to capture the two main contribu-
tors of motion: cardiac motion and respiratory motion. The
temporal regularization penalty encourages the cardiac and
respiratory phases change slowly in time.

D. Proposed optimization criterion
Based on the above analysis, we derive the parameters of

the network ✓ and the low-dimensional latent vectors zi; i =

Distance in latent space should match distance on manifold

distℳ (G[z1], G[z2]) ≤ ∥z1 − z2∥ ∥Jz(𝒢)∥F

Relation between distances

distℳ (G[z1], G[z2]) ≈ ∥z1 − z2∥

High Jacobian : lack of correspondence between spacesJz(𝒢)

Add regularization term

{Z, θ} = arg min
Z,θ ∑

i

∥𝒜i (𝒢θ[zi] − bi) ∥2 + λ1 ∥Jz(𝒢θ[z])∥2
F

network reg.

+ λ1 ∥∇tz∥2
F

latent reg.



Comparison with competing methods
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Fig. 5. Comparisons of the reconstruction performance with and without
progressive training in time strategy using d = 40. From the plot of SER vs.
Running time, we can see that the progressive training in time approach yields
better results with much less running time comparing to the training without
using progressive training in time. Two reconstructed frames near the end of
systole and diastole using SToRM500, the proposed scheme with progressive
training in time and the proposed scheme without using the progressive
training in time are shown in the plot as well for the comparison purpose.
The average Brisque scores for SToRM500, reconstruction with progressive
training in time and reconstruction without progressive training in time are
36.4, 37.3 and 39.1 respectively.

parameter d, which dictates the number of convolution filters
and hence the number of trainable parameters in the network.
In this section, we investigate the impact of the user-defined
parameter d on the reconstruction performance. We tested the
reconstruction performance using d = 8, 16, 24, 32, 40, 48 and
the obtained results are shown in Fig. 6. From the figure, we
see that when d = 8 or d = 16, the generator network is
too small to capture the dynamic variations. When d = 8,
the generator is unable to capture both cardiac motion and
respiratory motion. When d = 16, part of the respiratory
motion is recovered, while the cardiac motion is still lost.
The best SER scores with respect to SToRM with 500 frames
is obtained for d = 24, while the lowest Brisque scores
are obtained for d = 40. We also observe that the features
including papillary muscles and myocardium in d = 40 results
appear sharper than SToRM with 500 frames, even-though
the proposed reconstructions were only performed from 150
frames. We use d = 40 for the subsequent comparisons in the
paper.

D. Comparison with the state-of-the-art methods
In this section, we compare our proposed scheme with sev-

eral state-of-the-art methods for the reconstruction of dynamic
images.

We first compare the region of interest for SToRM with 500
frames (SToRM500), SToRM with 150 frames (SToRM150),
the proposed method with two different d values, the un-
supervised Time-DIP approach, and low-rank algorithm in
Fig. 7. From Fig. 7, we observe that the proposed scheme
can significantly reduce the errors compared to SToRM150.
Additionally, the proposed scheme is able to capture the
motion patterns better compared to Time-DIP while low-rank
method is unable to capture the motion patterns. From the time
profile in Fig. 7, we notice that the proposed scheme is capable
of recovering the abrupt change in blood-pool contrast between

Fig. 6. Impact of size of the network on the reconstruction performance.
In the experiments, we chose d = 8, 16, 24, 32, 40, 48 to investigate the
reconstruction performance. We use 500 frames for SToRM reconstructions
(SToRM500) as the reference for SER comparisons. For the investigation
about the impact of the network size on the reconstructions, we used 150
frames. The diastolic and systolic states and the temporal profiles are shown
in the figure for each case. The Brisque scores and average SER are also
reported. It is also worth noting that when d = 40, the results are even less
blurred than the results of using SToRM500, even though only one-third of
the data are used.

TABLE II
QUANTITATIVE COMPARISONS BASED ON SIX DATASETS: WE USED SIX

DATASETS TO OBTAIN THE AVERAGE SER, PSNR, SSIM, BRISQUE SCORE
AND THE AVERAGE TIME USED FOR THE RECONSTRUCTION.

Methods SToRM500 SToRM150 Propsed Time-DIP

SER (dB) NA 17.3 18.2 16.7

PSNR (dB) NA 32.7 33.5 32.0

SSIM NA 0.86 0.89 0.87

Brisque 35.2 40.2 37.1 42.9

Time (min) 47 13 17 57

diastole and systole. This is due to inflow effects associated
with gradient echo (GRE) acquisitions. In particular, the blood
from regions outside the slice enters the heart, which did
not experience any of the former slice selective excitation
pulses; the differences in magnetization of the blood with no
magnetization history and that was within the slice results
in the abrupt change in intensity. We note that some of the
competing methods such as time-DIP and low-rank blurs out
these details.

We also perform the comparisons on a different dataset in
Fig. 8. We compare the proposed scheme with SToRM500,
SToRM150, Time-DIP, and the low-rank approach. The re-
sults are shown in Fig. 8. From the figure, we see that the
proposed reconstructions appear less blurred compared to the
conventional schemes.

We also compared the proposed scheme with SToRM
with 500 frames (SToRM500), SToRM with 150 frames
(SToRM150), the unsupervised Time-DIP approach quanti-
tatively. We omit the low-rank method here because low-

8

Fig. 7. Comparisons with the state-of-the-art methods. The data used in this experiment are from dataset 1, slice no. 3. The first column corresponds to the
reconstructions from 500 frames (⇠ 25s of acquisition time), while the rest of the columns are recovered from 150 frames (⇠ 7.5s of acquisition time). The
top row corresponds to the diastole phase, while the third row is the diastole phase. The second row is an intermediate one. The bottom row corresponds to
the time profiles of the reconstructions. We observe that the proposed (d=40) reconstructions exhibit less blurring and artifacts, compared to SToRM150 and
competing methods. The quantitative comparisons of the methods for this slice are shown in Fig. II.

TABLE II
QUANTITATIVE COMPARISONS FOR FIG. 7

Methods SToRM500 SToRM150 Prop. (d = 24) Prop. (d = 40) Time-DIP Low-rank

SER (dB) NA 19.2 ± 0.2 20.6 ± 0.4 19.9 ± 0.8 17.6 ± 0.5 13.0 ± 0.8

PSNR (dB) NA 33.2 ± 0.6 34.6 ± 0.3 33.4 ± 0.8 29.9 ± 0.7 27.4 ± 0.7

SSIM NA 0.86 ± 0.01 0.9 ± 0.01 0.86 ± 0.02 0.84 ± 0.02 0.75 ± 0.02

Brisque 35.4 ± 2.7 39.3 ± 2.3 36.4 ± 1.1 33.9 ± 2.8 37.9 ± 1.5 39.4 ± 0.9

Time (m) 47 13 14.5 16.5 41 50

too small to capture the dynamic variations. When d = 8,
the generator is unable to capture both cardiac motion and
respiratory motion. When d = 16, part of the respiratory
motion is recovered, while the cardiac motion is still lost.
The best SER scores with respect to SToRM with 500 frames
is obtained for d = 24, while the lowest Brisque scores
are obtained for d = 40. We also observe that the features
including papillary muscles and myocardium in d = 40 results
appear sharper than SToRM with 500 frames, even-though
the proposed reconstructions were only performed from 150
frames. We use d = 40 for the subsequent comparisons in the
paper.

D. Comparison with the state-of-the-art methods
In this section, we compare our proposed scheme with sev-

eral state-of-the-art methods for the reconstruction of dynamic
images. We first compare the region of interest visually and
the quantitatively for SToRM with 500 frames (SToRM500),
SToRM with 150 frames (SToRM150), the proposed method
with two different d values, the unsupervised Time-DIP ap-
proach, and low-rank algorithm in Fig. 7 and Table II on
dataset 1. In this experiment, we used SToRM500 as the
reference for SER, PSNR and SSIM calculations. Two latent
vectors were used in this experiments. From Fig. 7, we observe
that the proposed scheme can significantly reduce the errors
compared to SToRM150. Besides, the proposed scheme is able
to capture the motion patterns better compared to Time-DIP

and low-rank method. These visual observations are further
confirmed by the quantitative results shown in Table II. We
note that the d = 24 results offer the best PSNR measures,
when compared against SToRM 500. However, the d = 40
results appear sharper than d = 24 and SToRM500, which is
also confirmed by the reduced Brisque scores.

As explained previously, the second dataset is more chal-
lenging due to heavy respiration and higher cardiac rate. See
from Fig. 10 that the liver goes in and out of the FOV. We
hence consider its recovery from 320 frames and use four
latent vectors to capture the larger motion. We compare the
proposed scheme with SToRM500, SToRM320, Time-DIP,
and the low-rank approach. The results are shown in Fig. 8 and
Table III. We can see that even with 500 frames, the SToRM
reconstructions are still not perfect. Hence, we only report the
Brisque scores. We observe from the figure that the proposed
scheme provides sharper reconstructions, which are confirmed
by the quantitative results in Table III.

We finally illustrate the proposed approaches in Fig. 9 and
Fig. 10 respectively. The proposed approach decoupled the
latent vectors corresponding to cardiac and respiratory phases
well in most of the datasets, as shown in the representative
example in Fig. 9. However, when the respiratory motion is
quite prominent as in Fig 10, more latent vectors are required
to obtain good recovery. In this case, four latent vectors shown
in the top row were used. We note that there is some mixing
between the latent vectors. In the future, we propose to add
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too small to capture the dynamic variations. When d = 8,
the generator is unable to capture both cardiac motion and
respiratory motion. When d = 16, part of the respiratory
motion is recovered, while the cardiac motion is still lost.
The best SER scores with respect to SToRM with 500 frames
is obtained for d = 24, while the lowest Brisque scores
are obtained for d = 40. We also observe that the features
including papillary muscles and myocardium in d = 40 results
appear sharper than SToRM with 500 frames, even-though
the proposed reconstructions were only performed from 150
frames. We use d = 40 for the subsequent comparisons in the
paper.

D. Comparison with the state-of-the-art methods
In this section, we compare our proposed scheme with sev-

eral state-of-the-art methods for the reconstruction of dynamic
images. We first compare the region of interest visually and
the quantitatively for SToRM with 500 frames (SToRM500),
SToRM with 150 frames (SToRM150), the proposed method
with two different d values, the unsupervised Time-DIP ap-
proach, and low-rank algorithm in Fig. 7 and Table II on
dataset 1. In this experiment, we used SToRM500 as the
reference for SER, PSNR and SSIM calculations. Two latent
vectors were used in this experiments. From Fig. 7, we observe
that the proposed scheme can significantly reduce the errors
compared to SToRM150. Besides, the proposed scheme is able
to capture the motion patterns better compared to Time-DIP

and low-rank method. These visual observations are further
confirmed by the quantitative results shown in Table II. We
note that the d = 24 results offer the best PSNR measures,
when compared against SToRM 500. However, the d = 40
results appear sharper than d = 24 and SToRM500, which is
also confirmed by the reduced Brisque scores.

As explained previously, the second dataset is more chal-
lenging due to heavy respiration and higher cardiac rate. See
from Fig. 10 that the liver goes in and out of the FOV. We
hence consider its recovery from 320 frames and use four
latent vectors to capture the larger motion. We compare the
proposed scheme with SToRM500, SToRM320, Time-DIP,
and the low-rank approach. The results are shown in Fig. 8 and
Table III. We can see that even with 500 frames, the SToRM
reconstructions are still not perfect. Hence, we only report the
Brisque scores. We observe from the figure that the proposed
scheme provides sharper reconstructions, which are confirmed
by the quantitative results in Table III.

We finally illustrate the proposed approaches in Fig. 9 and
Fig. 10 respectively. The proposed approach decoupled the
latent vectors corresponding to cardiac and respiratory phases
well in most of the datasets, as shown in the representative
example in Fig. 9. However, when the respiratory motion is
quite prominent as in Fig 10, more latent vectors are required
to obtain good recovery. In this case, four latent vectors shown
in the top row were used. We note that there is some mixing
between the latent vectors. In the future, we propose to add
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Dynamic MRI using SToRM

•  Generative SToRM (g-SToRM) model 
• Brief review of SToRM 
• g-SToRM for single slice dynamic MRI 

• Multi-slice dynamic MRI using g-SToRM 
• Background 
• Joint alignment and reconstruction of multi-slice dynamic MRI 

• MoCo-SToRM 
• Motion-compensated image recovery 
•  MoCo-SToRM 



Multi-slice free-breathing acquisition

Multi-slice acquisition is preferred in cine MRI over 3D
Good myocardium to blood-pool contrast because of in-flow effects

Higher temporal resolution

Current approaches: independent recovery of slices
Different breathing patterns and heart-rate

Challenges
Cannot exploit inter-slice redundancies

Need to align the slices/phases post-reconstruction



Latent space alignment: multi-slice to 3D 
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Idea: Jointly learn a 3D-generative model from multi-slice data

Post-recovery, excite with the latent vectors of any slice to create aligned volume time series

Each slice will have its own latent vectors that capture cardiac/respiratory motion



Challenge
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(a) Alignment and recovery of eight slices using V-SToRM (b) Alignment and recovery of eight slices using G-SToRM

(c) Latent vectors obtained by V-SToRM:MS (d) Latent vectors obtained by G-SToRM:MS

Fig. 5. Alignment and joint recovery of multislice data. In (a), we show the alignment and recovery of the eight slices obtained from the proposed multislice
V-SToRM scheme. Four different phases in the time series for each slice are displayed. From (a), we see that all the slices have the same cardiac phase and
respiratory phase, indicating that the multislice V-SToRM is able to align the slices. In (b), we show the alignment and recovery of the eight slices obtained
from the generalization of single-slice G-SToRM to the multislice setting. We also use four different phases in the time series for each slice to illustrate the
alignment of the multislice data. From (b), we see that some of the phases for some of the slices have poor image quality. In particular, the details in the
cardiac regions are poorly captured, and in some cases the boundaries of the heart are not visible. These issues can be understood from the plot distributions
of the latent vectors obtained by the multislice V-SToRM and G-SToRM:MS, shown in (c) and (d), respectively. We also plot the latent vectors for two of the
slices for each method. Note that we generated the results in (a) and (b) by feeding the latent vectors corresponding to the second slice into the generators.
The corresponding latent vectors used to generate the four different phases in (a) and (b) are indicated in the plot of the latent vectors in (c) and (d). From
(c) and (d), we see that the latent vectors obtained from the proposed multislice V-SToRM scheme have similar distributions, whereas the distributions for
the latent vectors obtained from G-SToRM:MS are very different.

The dataset used in Fig. 5 was acquired with eight slices
that covered the whole heart. We trained the variational model
based on the undersampled k-t space data and fed the latent
vectors corresponding to the second slice to the generator,
which produces the aligned multislice reconstructions. Shown
in the figures are four time points based on the different
phases identified by the latent variables. The rows in Fig.
5 (a) correspond to diastole in End-Inspiration, diastole in
End-Expiration, systole in End-Inspiration, and systole in
End-Expiration for each slice obtained using the proposed
multislice V-SToRM scheme. From Fig. 5 (a), we see that
the proposed multislice V-SToRM scheme is able to jointly
reconstruct and align the multislice free-breathing and ungated
cardiac MRI. We note that all the slices in each row have the

same cardiac phase and respiratory phase.
In Fig. 5 (b), we show the corresponding results for the

direct extension of the multislice G-SToRM approach. In par-
ticular, we trained the model using the undersampled k-t space
data and fed the latent vectors corresponding to the second
slice into the generator to produce the aligned multislice
reconstructions. From Fig. 5 (b), we see that the multislice
G-SToRM approach has some ability to align the multislice
reconstructions. However, we find that the image quality for
some of the frames (e.g., slices 5-8) is poor. For example,
the diastole phases for the G-SToRM:MS reconstructions are
blurred and the cardiac boundaries are missing.

The reason for the poor reconstructions offered by multislice
G-SToRM and the improved performance of V-SToRM can be
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respiratory phase, indicating that the multislice V-SToRM is able to align the slices. In (b), we show the alignment and recovery of the eight slices obtained
from the generalization of single-slice G-SToRM to the multislice setting. We also use four different phases in the time series for each slice to illustrate the
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cardiac regions are poorly captured, and in some cases the boundaries of the heart are not visible. These issues can be understood from the plot distributions
of the latent vectors obtained by the multislice V-SToRM and G-SToRM:MS, shown in (c) and (d), respectively. We also plot the latent vectors for two of the
slices for each method. Note that we generated the results in (a) and (b) by feeding the latent vectors corresponding to the second slice into the generators.
The corresponding latent vectors used to generate the four different phases in (a) and (b) are indicated in the plot of the latent vectors in (c) and (d). From
(c) and (d), we see that the latent vectors obtained from the proposed multislice V-SToRM scheme have similar distributions, whereas the distributions for
the latent vectors obtained from G-SToRM:MS are very different.

The dataset used in Fig. 5 was acquired with eight slices
that covered the whole heart. We trained the variational model
based on the undersampled k-t space data and fed the latent
vectors corresponding to the second slice to the generator,
which produces the aligned multislice reconstructions. Shown
in the figures are four time points based on the different
phases identified by the latent variables. The rows in Fig.
5 (a) correspond to diastole in End-Inspiration, diastole in
End-Expiration, systole in End-Inspiration, and systole in
End-Expiration for each slice obtained using the proposed
multislice V-SToRM scheme. From Fig. 5 (a), we see that
the proposed multislice V-SToRM scheme is able to jointly
reconstruct and align the multislice free-breathing and ungated
cardiac MRI. We note that all the slices in each row have the

same cardiac phase and respiratory phase.
In Fig. 5 (b), we show the corresponding results for the

direct extension of the multislice G-SToRM approach. In par-
ticular, we trained the model using the undersampled k-t space
data and fed the latent vectors corresponding to the second
slice into the generator to produce the aligned multislice
reconstructions. From Fig. 5 (b), we see that the multislice
G-SToRM approach has some ability to align the multislice
reconstructions. However, we find that the image quality for
some of the frames (e.g., slices 5-8) is poor. For example,
the diastole phases for the G-SToRM:MS reconstructions are
blurred and the cardiac boundaries are missing.

The reason for the poor reconstructions offered by multislice
G-SToRM and the improved performance of V-SToRM can be
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Application to multi-slice speech MRI

Need high temporal resolution: 2D multi-slice acquisition preferred over 3D
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Motion compensated manifold recovery (MoCO-STORM)

(a) Motion-resolved rec. (XD-GRASP) (b) Proposed MoCo-SToRM

Fig. 1. Illustration of XD-GRASP and proposed motion-compensated reconstruction algorithm. (a) XD-GRASP bins the k-t space data into
different respiratory phases, followed by the joint recovery of the images using total variation and wavelet regularization. The respiratory
signal is estimated from the central k-space data using coil clustering and low-pass filtering. (b) The proposed motion-compensated recon-
struction jointly learns the motion vectors �t and the static image template f from the k-t space data. To regularize the motion fields, we
model �t = G✓(z(t)) as the outputs of a deep CNN generator G✓ whose weights are denoted by ✓, driven by low-dimensional (e.g., 1-D in
lung MRI) latent vectors. The parameters of the CNN generator ✓, the latent vectors zt, and the template f are jointly estimated from the data.
The loss is the mean-square error between the actual measurements and the multichannel measurements of the deformed images ft, specified
by (3).

ft are deformed versions of a single image template f :

ft(x, y, z) = f
⇣
x��x(t), y��y(t), z��z(t)

⌘
= D (f,�(t)) .

(1)
Here, �(t) = {�x(t),�y(t),�z(t)} is the motion field at the
time instant t. The slow nature of MRI makes it impossible
to fully acquire all the k-space samples of each time frame.
This makes it difficult to recover the images, followed by the
estimation of motion from them.

We propose to jointly estimate the motion field for each
image and the template f from the k-t space data. We note
that the joint estimation problem is highly ill-posed. To reg-
ularize the motion fields, we use a manifold assumption. In
particular, we assume that the motion field for each time
frame t is the output of a generative model

�(t) = G✓(z(t)), (2)

driven by a low-dimensional latent vector z(t) 2 Rd, which
captures the dynamics (e.g., respiratory motion in lung imag-
ing). We set d = 1 in our experiments in this paper. Thus,
each image in the time series is expressed as the deformed
version of the 3-D volume f , deformed by the motion field
�t:

ft(x, y, z) = D

0

B@f,G✓(zt)| {z }
�(t)

1

CA . (3)

We implement D as an interpolation layer. With the above
model, the reconstruction scheme amounts to the joint esti-
mation of the image f , the parameters of the deep generator
✓, and the low-dimensional latent vectors Z = [z1, .., zM ]
from the measurements. We pose the reconstruction as the
minimization of the cost function:

C(z, ✓, f) =
MX

t=1

||At(ft)� bt||2 + �t||rtZt||, (4)

where ft is given by (3). Here, At are the forward models
for each of the phases and bt are the corresponding measure-
ments. Note that we also add a smoothness penalty on the la-
tent vector z along the time direction to encourage the latent
vectors to be smooth. We implement the above networks in
Pytorch and use Adam optimization to determine the optimal
parameters z, ✓ and f . The network parameters are initial-
ized as random, and the latent vectors are initialized as zero
vectors. The image template f is also initialized as zeros.

The direct optimization of (4) is associated with high
computational complexity, especially for high-resolution im-
ages. To minimize the computational complexity, we propose
a progressive training approach. Specifically, we solve (4)
for image volumes two times smaller than the original size in
each dimension with the central k-space samples. The latent
vectors and the network parameters that are learned from
the lower resolution are used as initialization for the high-
resolution setting. Because the motion fields are smooth, we
use the same motion network for all resolutions; the inter-
polation layer is modified to derive the motion fields at the
finer resolution. The static image f is solved at the higher
resolution.

3. EXPERIMENTS

3.1. Datasets and imaging experiments

The data used in the experiments in this work was acquired
using an optimized 3D UTE sequence with variable-density
readouts and a center of k-space oversampling [8] on a 1.5T
GE scanner with no contrast administration. The variable-
density readouts help retain SNR, and oversampling reduces
aliasing artifacts. A bit-reversed ordering was used during
the data acquisition. The data was acquired from an adult
healthy subject using 8 coils. The prescribed FOV = 32 ⇥

Φt(r) = 𝒢θ[z(t)]
Time varying motion fields

z(t)
Learned latent vectors

Deformations: generated by a CNN, when driven by time varying latent vectors
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signal is estimated from the central k-space data using coil clustering and low-pass filtering. (b) The proposed motion-compensated recon-
struction jointly learns the motion vectors �t and the static image template f from the k-t space data. To regularize the motion fields, we
model �t = G✓(z(t)) as the outputs of a deep CNN generator G✓ whose weights are denoted by ✓, driven by low-dimensional (e.g., 1-D in
lung MRI) latent vectors. The parameters of the CNN generator ✓, the latent vectors zt, and the template f are jointly estimated from the data.
The loss is the mean-square error between the actual measurements and the multichannel measurements of the deformed images ft, specified
by (3).

ft are deformed versions of a single image template f :

ft(x, y, z) = f
⇣
x��x(t), y��y(t), z��z(t)

⌘
= D (f,�(t)) .

(1)
Here, �(t) = {�x(t),�y(t),�z(t)} is the motion field at the
time instant t. The slow nature of MRI makes it impossible
to fully acquire all the k-space samples of each time frame.
This makes it difficult to recover the images, followed by the
estimation of motion from them.

We propose to jointly estimate the motion field for each
image and the template f from the k-t space data. We note
that the joint estimation problem is highly ill-posed. To reg-
ularize the motion fields, we use a manifold assumption. In
particular, we assume that the motion field for each time
frame t is the output of a generative model

�(t) = G✓(z(t)), (2)

driven by a low-dimensional latent vector z(t) 2 Rd, which
captures the dynamics (e.g., respiratory motion in lung imag-
ing). We set d = 1 in our experiments in this paper. Thus,
each image in the time series is expressed as the deformed
version of the 3-D volume f , deformed by the motion field
�t:

ft(x, y, z) = D

0

B@f,G✓(zt)| {z }
�(t)

1

CA . (3)

We implement D as an interpolation layer. With the above
model, the reconstruction scheme amounts to the joint esti-
mation of the image f , the parameters of the deep generator
✓, and the low-dimensional latent vectors Z = [z1, .., zM ]
from the measurements. We pose the reconstruction as the
minimization of the cost function:

C(z, ✓, f) =
MX

t=1

||At(ft)� bt||2 + �t||rtZt||, (4)

where ft is given by (3). Here, At are the forward models
for each of the phases and bt are the corresponding measure-
ments. Note that we also add a smoothness penalty on the la-
tent vector z along the time direction to encourage the latent
vectors to be smooth. We implement the above networks in
Pytorch and use Adam optimization to determine the optimal
parameters z, ✓ and f . The network parameters are initial-
ized as random, and the latent vectors are initialized as zero
vectors. The image template f is also initialized as zeros.

The direct optimization of (4) is associated with high
computational complexity, especially for high-resolution im-
ages. To minimize the computational complexity, we propose
a progressive training approach. Specifically, we solve (4)
for image volumes two times smaller than the original size in
each dimension with the central k-space samples. The latent
vectors and the network parameters that are learned from
the lower resolution are used as initialization for the high-
resolution setting. Because the motion fields are smooth, we
use the same motion network for all resolutions; the inter-
polation layer is modified to derive the motion fields at the
finer resolution. The static image f is solved at the higher
resolution.

3. EXPERIMENTS

3.1. Datasets and imaging experiments

The data used in the experiments in this work was acquired
using an optimized 3D UTE sequence with variable-density
readouts and a center of k-space oversampling [8] on a 1.5T
GE scanner with no contrast administration. The variable-
density readouts help retain SNR, and oversampling reduces
aliasing artifacts. A bit-reversed ordering was used during
the data acquisition. The data was acquired from an adult
healthy subject using 8 coils. The prescribed FOV = 32 ⇥

Φt(r) = 𝒢θ[z(t)]
Time varying motion fields

z(t)
Learned latent vectors

Image at each time instant: Deformed version of a template f

f(r)

Static Image

Deformations: generated by a CNN, when driven by time varying latent vectors

Reconstruction: joint recovery of , , and f(r) θ z(t)
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4.2. Experimental datasets

In Fig. 4, we show the learned latent vectors, time profiles, and example estimated

deformation maps and corresponding time profiles from the pre-contrast dataset from

the healthy subject. We show the estimated latent vectors from the first 200 frames in

(a). We also show the time profile of the reconstructed images in (b) and the time profile

of the deformation maps in (c), corresponding to the blue lines in the images. From the

two profiles, we see that the motion patterns coincide with the learned latent vectors.

In (d) we show the estimated deformation maps from two time points, indicated by red

and green dots in (a), corresponding to the inhalation phase and the exhalation phase.

The results show that the latent vectors closely capture the dynamics of the motion.

Figure 4. Illustration of the learned quantities from the pre-contrast healthy
volunteer. In (a), we show the estimated latent vectors corresponding to the
first 200 frames, while (b) and (c) show the time profile of the reconstructed
image volumes and the deformation maps, respectively. From the three figures
on the left, we see that the motion patterns in the time profiles closely match
the learned latent vectors. In (d), we show the deformation maps in the three
directions, corresponding to the time frames marked by red and green cross
marks in the latent vectors in (a).

4.3. Comparison with state-of-the-art methods

In this section, we compare the results of the proposed scheme with XD-GRASP and

iMoCo. In Fig. 5, we show the visual comparisons of the methods on post-contrast

datasets. From Fig. 5, we observe that the MoCo-SToRM reconstructions can reduce

the noise and capture more details when compared to the motion-resolved XD-GRASP

reconstructions. Furthermore, the MoCo-SToRM reconstructions are less blurred than

those of the motion-compensated iMoCo reconstructions. We note that the post-contrast



MoCO-STORM vs XD-GRASP vs iMoCO: normal subject

Zou et al, MoCo-SToRM: http://arxiv.org/abs/2111.10887

http://arxiv.org/abs/2111.10887


MoCO-STORM: Maximum intensity projections



Robustness to bulk motion artifacts

Zou et al, MoCo-SToRM: http://arxiv.org/abs/2111.10887

Joint recovery of 256x256x256x1000 volumes

http://arxiv.org/abs/2111.10887


Benefit of bulk motion compensation
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(a) Latent vectors

(b) Time profiles

(c) Detected bulk motion: shoulder moving

(d) Comparison of the reconstructions

Figure 8. Bulk motion analysis. (a) shows the latent vectors estimated from
the proposed scheme and two parts are zoomed to emphasize the sudden jump
in the latent vectors. In (b), we then plot the time profiles corresponding to the
latent vectors in (a). From the plots of the time profiles, we can see that bulk
motion happens when there is a sudden jump in the latent vectors. We showed
the motion in the images in (c) and the comparison of the reconstruction using
MoCo-SToRM and iMoCo is shown in (d).

quality of the reconstructions. While for the proposed MoCo-SToRM scheme, we are

able to have very high spatial resolution (⇠ 0.25 seconds) reconstruction. Furthermore,

we are able to have more intermediate motion states (⇠ 20 states) from exhaltion state

to inhalation state.

The proposed MoCo-SToRM scheme is also able to deal with bulk motions as

discussed in the previous section. This o↵ers the possibility of the usage of the proposed

scheme for some patient groups such as pediatric patients.

Zou et al, MoCo-SToRM: http://arxiv.org/abs/2111.10887

http://arxiv.org/abs/2111.10887


Motion resolved recon. Extreme MRI 

Spatial resolution:1.25x1.25x1.25 
Matrix size: 408x183x379 
Temporal resolution: 515 ms

Copied from the “Extreme MRI” paper. 

MoCo-SToRM 
Matrix size:256x256x256 
Temporal resolution: 260 
ms
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Preliminary study: pediatric imaging (NICU subject)

In collaboration with N. Higano, A. Bates, L. Torres, S. Fain, 

Figure 1. 
(a) The MRI scanner located within the CCHMC NICU, with a baby doll placed on the 
patient table, for reference. (b) The pulse sequence diagram for the UTE sequence. The 
dotted line indicates the nutation point of the RF pulse, and the area of the pink shaded 
region is equal to zero at TE, represented by the star (at k-space center) (c) Ten consecutive 
center-out radial k-space trajectories are shown, highlighting the pseudo-random view 
ordering and the repeated sampling of the k-space center, indicated again by a star. (d) A 
200-sec segment of the phase sampled from the center of k-space during an infant exam, 
with an example of bulk motion highlighted.
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Joint recovery of 256 x 256 x 256 x 10,000 volumes



Summary of g-SToRM

•Images or motion fields: nonlinear mapping of latent vectors

!
Latent vectors 2D NUFFT

"2(t) "2(t)

k-t space data

z(t)

•Generate images on demand

•Learn generator and latent vectors from data
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Figure 10: Preliminary experiment
confirming the ability of GSTORM to re-
cover free-breathing and ungated car-
diac perfusion MRI data, acquired us-
ing a golden angle stack of star (5
slices) sequence. The three learned la-
tent vectors on the top row captures the
cardiac, respiratory, and contrast vari-
ations in the data. Rows 2-4 corre-
spond to the output of the generator
when only the respiratory (2nd row), car-
diac (3rd row) and contrast latent vec-
tors (4th row) are varied, keeping the oth-
ers fixed. The last row correspond to
images sampled uniformly in time, when
the images would be in different car-
diac/respiratory/contrast phases.

C.4.4.1:Anticipated results: We expect a good match between the pre- and
post-contrast self-gating structural scans with the corresponding g-SToRM
measures. Likewise, we expect good match between the g-SToRM
perfusion metrics and the ones recovered using the pipeline in [114]. Based
on these results [114], we expect the MRI scans to identify the abnormalities
that are visible in HRCT, including reticulation and honeycombing. In particu-
lar, we expect the detected defects in the above lobes to agree well. We also
expect the average PBV measures within the lobes to agree with the CT-PBV.
C.4.4.2:Power analysis: Agreement for presence of defect between MR and
HRCT images on n=20 study participants will be assessed using the Kappa
statistic. Assuming defects are present in 50% of the sample, we can discrim-
inate between slight (Kappa=0.20) and substantial (Kappa=0.75) agreement
at the 0.05 significance level with 0.80 power with this sample size.
C.4.5. Preliminary data
4.5.1: Free breathing UTE acquisition of lung structure: The FB recovery of
lung structure from 5 minutes using MoCo-STORM in the presence of bulk
motion is shown in Fig.8. We will build upon this approach to recover pre and
post-contrast structure and perfusion images.
4.5.2: Lung perfusion metrics: The quantitative perfusion parameters (PBV,
PBF, and MTT) from a normal and an IPF subject are shown in Fig. 9. We
will estimate these parameters from FB acquisitions.
4.5.2: Preliminary data on joint recovery of perfusion kinetics and motion: We
provide preliminary evidence on the utility of g-SToRM in jointly recovering
cardiac and respiratory motion and contrast dynamics of FB cardiac perfu-
sion MRI data in Fig. 10. These results make us confident in recovering
perfusion dynamics in the presence of respiratory motion; we will ignore cardiac motion similar to current litera-
ture (e.g [115,120].) Our ability to acquire lung perfusion preliminary data is currently limited due to funding and
IRB constraints.
C.4.6. Potential pitfalls and alternatives: Based on our preliminary data, we are confident of jointly recovering
perfusion and structure. If the proposed approach cannot resolve the respiratory and perfusion dynamics, we
will train the subjects to perform shallow breathing. In the worst-case scenario of this approach not working,
we will use a 5-minute post-contrast scan to estimate the structure, while a separate breath-held UTE or SPGR
sequence [115] will be used to estimate perfusion data.

C.5: SA.3: Determine the preliminary utility on PH subjects
C.5.1. Background and Rationale: Several vasodilator therapies [121], which can significantly reduce morbidity
and mortality in PH when started early, were approved by the FDA recently. The successful completion of this
aim can result in a free-breathing cardiopulmonary MRI protocol for pre-symptomatic screening. Multiple subject
groups that are at high risk for PH can greatly benefit from this protocol for early detection, differentiation of
patients that benefit from specific therapies, and provide longitudinal assessment of therapy efficacy.
C.5.2. Objectives and Hypothesis: The main objective is to introduce a free-breathing cardio-pulmonary MRI
protocol for the early detection, differentiation, and assessment of therapy efficacy in PH. The hypotheses are that
(a) the proposed free-breathing protocol can provide reliable estimates of cardiac structure, function, T1 maps
within RV and LV wall, lung structure, and perfusion the PH subjects, who have difficulty holding their breath, and
(b) the abnormal measures obtained by the proposed protocol can differentiate PH from RHC normal subjects.
C.5.3. Approach: We will test the above hypotheses using 30 RHC confirmed subjects in the WHO Group 1
PAH, with the imaging performed within two months of RHC and prior to starting pulmonary vasodilator therapy.
Patients will be recruited from the PH clinic at Univ. Iowa and undergo consent by the PH research nurses or Dr.
Gerke. The Univ. Iowa PH program is a national Center of Comprehensive Care (the only one in Iowa), with over
400 patients being followed for PH, with 250 on active advanced therapies. Approximately 2-3 patients per week
undergo RHC. We will exclude subjects with any left heart disease, lung disease, chronic pulmonary emboli, or
other multifactorial cause such as myeloma, renal disease, anemia. We plan to include subjects of all races and


